Bill Gran

GRAN Corporation

A Companion to

Analysis and Design of Flight Vehicle Structures

by Elmer F. Bruhn, PhD

by

BILL GRAN

President, CEO & Super Genius

GRAN CORPORATION

Second Edition

GRAN CORPORATION

2008

Copyright, 2011, by *GRAN Corporation*. Printed in the United States of America. All rights reserved.

ISBN 978-0-9816076-1-0

ISBN 0-9816076-x-x

GRAN Corporation Whitney, Texas

Preface

Mestrius Plutarchus (Plutarch)

"The mind is not a vessel to be filled but a fire to be kindled."

Albert Einstein

"Anyone who has never made a mistake has never tried anything new."

"Example isn't another way to teach, it is the only way to teach."

"It is a miracle that curiosity survives formal education."

Thomas Huxley

"Try to learn something about everything and everything about something."

Bertrand Russell

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry."

Sir Isaac Newton

"If I have seen farther than others it is because I have stood on the shoulders of giants."

Forward

"Be honest ... work hard ... love everyone."

Martin Gran

"Love all, trust a few."

William Shakespeare

Legal Department

While every effort has been made to assure that the information contained in the book is accurate and correct, it is only intended to provide general information for educational use. It is not intended to be a substitute for the reader's own research and judgment and the author assumes no liability for damages or losses caused by, directly or indirectly, the information contained within.

Dedication

Dedicated to the memory of James R. Gran, Martin Gran, Marie Gran, Meredith "Swede" Gran, Gordon Gran, Connie Gran, Grace Gran, Lavonne Gran ... my friends and classmates Robin Bennett, Gary Golubski, Ed Lehman, Mike Lewis, Roger Merrick, Julie Reiter, Steve Sanger, Leon Schoenthaler, Sean Shea, Dave Wetzel ... inventors and authors John V. Atanasoff, Clifford E. Berry, Elmer F. Bruhn, Hardy Cross, Louis G. Dunn, Paul Kuhn, David J. Peery, William F. McCombs, Ernest E. Sechler, Fred Seely, Francis R. Shanley, James Smith, Stephen P. Timoshenko and all of the giants in mathematics, science, engineering and computer science.

"The whole earth is the tomb of heroic men and their story is not given only on stone over their clay but abides everywhere without visible symbol, woven into the stuff of other men's lives."

Pericles

Acknowledgments

Special thanks to Dr. Charles (Ben) Basye, Dr. William F. Riley, Dr. Loren W. Zachary, Dr. Charles R. Mishke, Dr. Howard N. Shapiro, Sherman Burns, Glen Crawford, Keith Francois, Sverre Gran, Gary Holst, Lou Mavros, Bill Merrick, Rex Sanger, Fred Taylor ... the many contributors such as Jim Baldwin, Robert Booth, Chris Boshers, Frank Dylla, Rudy Haitchi, Ned Hanson, Chuck Lilly, Craig Plunkett, Jeff Schmidt, Clint Smith, Curt Wigant, Joe Zuklic ... my extended family from Norway to California ... all of the fine folks in and around Maquoketa and the state of Iowa. Takk så mye!

Finally, an ever grateful "thousand thanks" to all veterans ...

TUSEN TAKK and GOD BLESS AMERICA!

Contents at a Glance

1.0	ANALYSIS AND DESIGN OF FLIGHT VEHICLE STRUCTURES	.1.1
2.0	AIRCRAFT STRUCTURES	.2.1
3.0	CHARTS AND GRAPHS	.3.1
4.0	REFERENCES	.4.1
5.0	SYMBOLS AND ABBREVIATIONS	.5.1

Table of Contents

L.O	ANALYSIS AND DESIGN OF FLIGHT VEHICLE STRUCTURES	1.1
Pag	E A3.7 MOMENT OF INERTIA OF AN AIRPLANE	1.1
Pag	E A3.11 PROPERTIES OF A TWO-CELL WING BEAM SECTION	1.1
Т	Table 9, Page A3.11	1.1
Pag	E A4.3 MOTION OF RIGID BODIES	1.2
Pag	E A4.13 DYNAMIC EFFECT OF AIR GUSTS	1.2
Pag	E A5.22 EQUATIONS FOR A COMPRESSIVE AXIALLY LOADED STRUT	1.2
Pag	E A5.23 BEAM-COLUMNS	
T	able A5.I, Case III, Distributed Load, No End Moments	
T	able A5.I, Case V, Concentrated Side Load, No End Moments	
Pag	E A5.28 BIPLANE WING SPAR EXAMPLE	1.4
F	igure A5.67	
F		
Pag	E A5.29 BEAM-COLUMN, LANDING GEAR	
Pag	E A6.2 TRANSMISSION OF POWER BY A CYLINDRICAL SHAFT	
Pag	E A6.5 TORSIONAL STIFFNESS	
Pag	E A7.7 CASTIGLIANO'S THEOREM	1.10
S	train Energy	1.10
Pag	E A7.11 TRUSS WITH PINNED JOINTS	
Pag	E A7.14 VIRTUAL WORK	
Pag	E A7.15 DUMMY UNIT LOAD	
Pag	E A7.16 TAPERED SHEAR BEAM	
٨	Nethod of Virtual Work	
E	ree Body Diagram	
S	Shear Flow	
R	Real Loads	
V	/irtual Loads	
D	Data	
S	par Caps and Stiffeners	
S	par Webs	
D	Deflection at Point G	
S	hear Flow in Tapered Webs	
PAG	E A7.24 INFLUENCE COEFFICIENTS - TRUSS WITH PINNED JOINTS	
G	Graphic	
Ū	Init Load Distribution	
Т	Franspose	
F	lexibility Coefficients	
٨	Aultiply.	
٨	Matrix Triple Product	
D	Deflections	
Т	Three Load Cases	
PAG	F A7.25 INFLUENCE COFFFICIENTS - LANDING GEAR UNIT	
F	lexibility Coefficients	
U	Init Load Distribution	
Т	- Transpose	
٨	Aultinly	
۰. ۸	Matrix Triple Product	
Pag	F A7.26 INFLUENCE COFFFICIENTS – TAPERED SHEAR BEAM	
. A3 T	Thin Web Aluminum Beam	
ת	Determine the deflection at Point G (See Bruhn name $\Delta 7.26$)	1 22
F	Free Body Diagram	1.22
	ree beay bragram	

Flexibility Coefficients	1.22
Unit Load Distribution	1.23
Transpose	1.23
Multiply	1.23
Unit Load Distribution	1.24
Matrix Triple Product	1.24
Deflections	1.25
PAGE A7.28 METHOD OF ELASTIC WEIGHTS - MOHR'S METHOD	1.25
PAGE A7.29 METHOD OF ELASTIC WEIGHTS – MOHR'S METHOD	1.26
Area of Each Half of the Moment Curve	1.26
Deflection at Center of Beam	1.26
PAGE A7.29 MOHR'S METHOD – CANTILEVER WING EXAMPLE	1.27
Figure A7.43	1.27
Table A7.6	
PAGE A7.30 MOHR'S METHOD – SEAPLANE CANTILEVER WING EXAMPLE	1.28
PAGE A7.31 MOMENT AREA METHOD – SEAPLANE CANTILEVER WING EXAMPLE	
Figure A7.46	
Page A7.32 Moment Area Method – Fixed Beam.	
Figure A7 47	1 31
Fyample Problem 37	1 31
Simply Supported	1 32
Fixed	1 32
Two Equations Two Unknowns	1 32
PAGE 47 39 INFLUENCE COEFEICIENT MATRIX - TRUSS	1 33
Influence Coefficients	1 33
Unit Load Distribution	1 33
Transnose	1 33
Multinly	1.35
Matrix Triple Product	1.34
Deflections	1.34
Croatest Deflection of Doint 4	1.34
PAGE A0.2 THEOREM OF LEAST WORK	1.35
PAGE AS.5 METHOD OF LEAST WORK - TIKED DEAM	1.35
S Loads	1.30
Table AS 1	1.30
Linit Loads	1.30
	1.37
Nue Louus	1.37
Degree of Neutriduricy	1.37
DACE AS 2 METLOD OF DUMANY LINIT LOADS SINCEY REDUNDANT TOUSS	1.30
Dummy Unit Load Mathed - Unequal Areas	1.39
Given	1.40
Civen	1.40
S Louds	1.40
Nienhoer Forces	1.40 1 <i>1</i> 1
Displacements	1.41
Spreadshaat Daga 2	1.43 1 <i>1 1</i>
DAGE AS 10 TRUCES WITH DOUBLE REDUNDANCY	1.44 1 / E
C Loads	1.45 1 / E
J Louis	1.45 1 <i>л</i> г
rubic Ao.2 S Loads Evnanded	1.45 1 <i>ЛС</i>
S LOUUS LAPUIIUCU	1.40 1 A7
riyuit	1.47
UTIL A LUUUS	1.47

Unit Y Loads	1.47
Unit Loads	1.48
Two Equations, Two Unknowns	1.48
True Loads	1.48
PAGE A8.11 DUMMY UNIT LOAD METHOD – TRUSS WITH DOUBLE REDUNDANCY	1.49
Solution	1.49
Table A8.3	1.49
S Loads	1.50
Unit Loads u "	1.50
Unit Loads u	1.50
Unit Loads,	1.51
Two Equations, Two Unknowns	1.51
True Loads	1.51
Degree of Redundancy	1.51
FLEXIBILITY COEFFICIENTS	1.52
PAGE A8.15 Example Problem 9	1.52
Page A8.21 Continuous Truss	1.53
Member Flexibility Coefficient	
Matrix [q _{im}]	1.54
Figure A8.30a	
Figure A8.30b	
Calculations	
Example	
Member Forces for Unit Applied External Loads	
Page A8.23 Tubular Tail Fuselage Truss	
Figure A8.31	1.59
Joint Coordinates	
Statics	
loints	1 62
Matrix [C ::]	
Inverse of [C] Matrix	1 63
Unit Stress Distribution- Determinate Structure [a in a in]	
PAGE A8.25 IDEALIZED BOX BEAM.	
Elexibility Coefficients	1 64
Matrix	
Tapered Bar	
True Stresses	1 66
Page A8 32 Influence Coefficient Matrix – Redundant Truss	1 67
Influence Coefficients	1 67
Unit Load Distribution	1 67
Transnose	1 67
Multinly	1 67
Determinate Stress Distribution	
Redundant Forces	1 68
PAGE A9 13 CALCULATION OF FRAME FLASTIC PROPERTIES	1 68
PAGE A11.9 MOMENT DISTRIBUTION METHOD – FIXED BEAM WITH SUPPORT DEFLECTIONS	
PAGE A11 9 MOMENT DISTRIBUTION METHOD – CONTINUOUS BEAM WITH DEFLECTED SUPPORTS	1 70
PAGE A11.13 FUSELAGE SIDE TRUSS	
PAGE A11.15 MOMENT DISTRIBUTION METHOD – FIXED BEAM WITH VARIABLE INFRIMA	
Table A11.3	
PAGE A11.16 MOMENT DISTRIBUTION METHOD – FIXED BEAM WITH VARIARI F INERTIA	
Figure A11.27	
Figure A11.28	1 72
Figure A11.29.	

Figure A11.30a	1.73
Figure A11.30b	1.74
Figure A11.30c	1.74
Moment / Inertia Diagram	1.74
PAGE A11.21 MOMENT DISTRIBUTION METHOD – FRAME WITH MISSING DIAGONAL SHEAR MEMBER	1.75
Moment Distribution (Hardy Cross) Method	1.75
Comparison of Moments from the Moment Distribution (Hardy Cross) Method	1.78
Summary	1.79
PAGE A11.23 EXAMPLE PROBLEM 12	1.80
PAGE A11.24 FIXED-END MOMENT COEFFICIENT, UNIFORMLY VARYING LOAD - FIGURE A11.49	1.80
PAGE A11.25 FIXED-END MOMENT COEFFICIENT, CONCENTRATED LOAD – FIGURE A11.52	1.80
PAGE A11.26 MOMENT DISTRIBUTION METHOD – CONTINUOUS BEAM	1.81
PAGE A11.27 BIPLANE WING EXAMPLE	1.82
Figure A11.58	1.82
Figure A11.59	1.82
Solution	1.83
PAGE A12.6 SLOPE DEFLECTION METHOD – ELEVATOR BEAM EXAMPLE	1.83
PAGE A13.3 METHOD 3 – SECTION PROPERTIES.	1.84
PAGE A13.8 BEAM BENDING STRESSES – NEUTRAL AXIS METHOD	1.84
PAGE A13.12 BEAM BENDING STRESSES	1.84
PAGE A13.13 BEAM BENDING STRESSES	1.85
PAGE A14.8 SHEAR FLOW IN A ZEE SECTION	1.85
PAGE A14.9 SHEAR FLOW IN A ZEE SECTION	1.85
PAGE A14.10 SHEAR FLOW IN A ZEE SECTION – NEUTRAL AXIS METHOD	1.85
PAGE A15.10 SINGLE CELL WING BEAM, EXAMPLE 2	1.85
PAGE A15.18 SHEAR FLOW IN A SYMMETRICAL FIVE CELL BEAM – BENDING	1.86
Solution 1	1.86
Solution 2	1.89
PAGE A15.22 SHEAR FLOW IN A SYMMETRICAL TEN-CELL BEAM	1.92
Closing Shear Flows – Left Half	1.92
Assumed Static Condition – Left Half	1.92
Final Shear Flow Values – Left Half	
Closing Shear Flows – Right Half	1.93
Assumed Static Condition – Right Half	1.93
Final Shear Flow Values – Right Half	
Final Shear Flow Values	
Shear Flow	
Assumed Static Condition for Shear Flow q_s	1.95
Summary	
PAGE A15.11 SINGLE CELL WING BEAM – MULTIPLE STRINGERS	
Column 1	
Figure A15-28	
Figure A15-29	
Final Shear Flow	1.97
Table A15.1	
PAGE A15.27 SHEAR FLOW IN CLOSED THIN-WALL SECTIONS	1.99
Figure A15-73	1.99
FIYUIE A15-74	1.100
FIYUIE A15-75	1.101
FIGURE A15-70	1.101
PAGE A10.5 KEUTANGULAK PLATES UNDER VARIOUS LUADINGS	1.102
PAGE A17.4 RELIANGULAK PLATES UNDER VARIOUS LUADINGS	1 102
PAGE A17.0 IVIEWIBKANE STRESS AND DEFLECTION COEFFICIENTS	1 102
FAGE A17.7 LARGE DEFLECTION IN PLATES	1.103

PAGE A18.1 COMBINED BENDING AND COMPRESSION OF COLUMNS.	1.103
PAGE A18.5 THE FAILURE OF COLUMNS BY COMPRESSION	1.103
PAGE A18.10 PURE BENDING OF THIN PLATES	1.104
PAGE A18.11 PURE BENDING OF THIN PLATES	1.104
PAGE A19.6 THREE FLANGE SINGLE CELL WING	1.104
PAGE A19.7 THREE FLANGE SINGLE CELL WING	1.104
PAGE A19.8 ANALYSIS OF WING STRUCTURES	1.104
PAGE A19.17 BENDING AND SHEAR STRESS ANALYSIS – TAPERED MULTIPLE STRINGER WING	1.105
PAGE A19.19 ANALYSIS FOR SHEAR STRESSES IN WEBS AND SKIN	1.105
PAGE A20.5 FUSELAGE ANALYSIS – EFFECTIVE CROSS SECTION	1.106
Table A20.1	1.106
Table A20.2	1.106
PAGE A20.6 FUSELAGE ANALYSIS – EFFECTIVE CROSS SECTION	1.107
Table A20.3	1.107
PAGE A20.8 FUSELAGE SECTION, ULTIMATE BENDING STRENGTH	1.108
Table A20.4	1.108
PAGE A20.9 SHEAR FLOW ANALYSIS FOR TAPERED FUSELAGE – BEAM PROPERTIES AT ONE SECTION	1.109
Table A20.5	1.109
Properties	1.109
Shear Flow	
PAGE A20.10 TAPERED CIRCULAR FUSELAGE WITH ASYMMETRICAL STRINGER AREAS – DELTA P METHOD	
Table A20.6	
Table A20.7	
Table A20.8	1 111
Table A20.9	1 112
Table A20.10	1 112
Comparison	1 113
PAGE A22 7 SHEAR LAG ANALYSIS OF BOX BEAMS	1 114
Page A22 13 Stresses in Inner Rays	1 115
PAGE A23 11 SINGLE RAY PINNED TRUSS	1 115
Method of Displacements – Stiffness Method	1 116
Page A23 15 PINNED TRUSS	1 119
PAGE R1 & RAMBERG-OSGOOD STRESS-STRAIN CURVE	1 120
PAGE C1.5 MOHR'S CIRCLE FOR PRINCIPAL STRESSES	1 1 2 1
	1 1 2 2
PAGE C1.9 ACTAHEDRAL SHEAR STRESS THEORY	1 173
	1 173
PAGE C2.2 NON-DIMENSIONAL COLUMIN CURVES	1 172
PAGE C2.13 STRENGTH OF COLUMINS WITH STADLE COOSS SECTIONS	1 173
PAGE C2.13 STRENGTH OF COLUMNS WITH STABLE CROSS SECTIONS	1 120
PAGE C2.14 STRENGTH OF COLOMINS WITH STABLE CROSS SECTIONS	1 124
PAGE C2.15 STRENGTH OF STEPPED COLOIVIN	1 124
PAGE C2.10 COLUMN STRENGTH WITH KNOWN END RESTRAINING MOMENT	1 125
PAGE C2.17 COLUMNIN STRENGTH WITH KNOWN LIND RESTRAINING WOMENT	1 1 25
PAGE C2.17 COLOMINS WITH ELASTIC LATERAL SUPPORTS	1 1 25
PAGE C2.10 REFERENCES	1 125
	1 125
FAGE C4.24 OLTIVIATE STRENGTH IN CONVIDINED CONVERESSION, DENDING AND TORSION	1 1 7 C
RAGE C4-25 OLTIVIATE STRENGTH IN CUIVIDINED CUMPRESSION, DENDING AND TURSION.	1 126
PAGE C4.20 CUMBINED CUMPRESSION, DENDING, FLEXURAL SHEAK AND TURSION	1.12b
PAGE C.5.4 CHART OF NUN-DIIVIENSIONAL COMPRESSIVE BUCKLING STRESS	1 1 2 2
PAGE CD.D DIMPLIFIED CLADDING REDUCTION FACTORS	1.128
PAGE C5.7 BENDING - BUCKLING CUEFFICIENT OF PLATES.	1.128
PAGE C5.8 COMBINED BENDING AND SHEAR	
PAGE C5.11 CANTILEVER WING - SKIN, KIBS AND STIFFENERS	1.129

PAGE C5.12 BUCKLING STRENGTH OF FLAT SHEET IN COMBINED STR	ESS SYSTEMS1.130
PAGE C6.3 BUCKLING STRESS FOR HAT-SECTION STIFFENERS	
PAGE C6.4 Z-SECTION STIFFENERS	
PAGE C7.6 RESTRAINT PRODUCED BY LIPS AND BULBS	
Equation C7.8	
Equation C7.9	
Figure C7.12	
PAGE C7.6 RESTRAINT PRODUCED BY LIPS AND BULBS	
PAGE C7.10 SHEET EFFECTIVE WIDTHS	
PAGE C7.11 SHEET EFFECTIVE WIDTHS	
PAGE C7.15 FAILURE BY INTER-RIVET BUCKLING	
PAGE C7.26 COLUMN STRENGTH OF STIFFENER WITH EFFECTIVE SHI	EET
PAGE C7.27 COLUMN STRENGTH OF STIFFENER WITH EFFECTIVE SHI	EET
PAGE C8.24 BUCKLING STRENGTH OF MONOCOQUE CYLINDERS	
PAGE C9.12 ORTHOTROPIC CIRCULAR CYLINDERS	
Page C9.14 References	
PAGE C10.7 STIFFENER SIZE TO USE WITH NON-BUCKLING WEB	
PAGE C10.8 MINIMUM MOMENT OF INERTIA REQUIRED IN STIFFENI	NG MEMBERS
PAGE C10.14 BUCKLING EQUATION	1.137
PAGE C11.11 WAGNER BEAM, CHECK OF WEB TO FLANGE RIVET AT	TACHMENT
PAGE C11.12 LOWER FLANGE BENDING STRESSES	1.138
PAGE C11 12 COMBINED FLANGE AXIAL STRESSES	1 138
PAGE C11.13 CRIPPIING STRESS FOR THE UPPER FLANGE	
PAGE C11 14 NACA SYMBOLS	1 139
PAGE C11 15 THICKNESS AND FLANGE FLEXIBILITY FACTOR	1 139
PAGE C11 17 AVERAGE AND MAXIMUM STRESS IN UPRIGHT OR WE	R STIFFENER 1 139
PAGE C11.18 WEB DESIGN	1 140
PAGE C11 19 SECONDARY BENDING MOMENT IN FLANGES	1 140
Page C11 38 ALLOWARIE STRESS IN FLISELAGE SKIN - DIAGONAL TE	III-10 INSION 1 140
PAGE C11 44 LONGERON TYPE FUSELAGE STRUCTURE	1 140
PAGE C11 49 REFERENCES	1 140
PAGE C12 13 HEXAGONAL CELL CORE WRINKLING - BIAXIAL AND SH	IFAR INTERACTION 1 141
PAGE C12 14 SHEAR CRIMPING	1 142
PAGE D3 6 Splice with Filler	1 142
PAGE D3 7 FRAMING CUTOUTS IN WEB	1 142
PAGE D3 9 FRAMING CUTOUTS IN WEB	1 142
Figure D3 24	1 143
PAGE D3 10 FRAMING CUTOUTS WITH DOUBLERS OF BENTS	1 143
2.0 AIRCRAFT STRUCTURES	
FRRATA – ANALYSIS OF WING RIBS	21
Three Equations. Three Unknowns	
In Matrix Form	21
Invert Matrix	2.1
Solve	21
	22
LUG SHEAR-OUT	29
Fauation for the Length of Shear-Out Area	29
Example	2.9
Lenath of Shear-Out Area	2.9
Shear Stress	2.9
Tension at Net Section	2.9
SCHRENK'S METHOD OF SPANWISE AIR-I OAD DISTRIBUTION	2.5
Table 9 1	2 10
	2.10

Table 9.2	
Figure 9.16	
Table 9.4	
Spanwise Distribution of Induced Drag	
Table 9.4	
Table 9.5	
Table 9.6	
Plot	
Graph	
External Loads	
Tables 10.1 and 10.2	
Figure 10.9	
Table 10.3	
Figure 9.16	
Figure 9.20	
Data	
Table 10.4	
V-n Diagram	
SHEAR AND BENDING MOMENT DIAGRAMS	
BEAM SHEAR STRESSES	
SHEAR FLOW IN THIN WERS	2.21
SHEAR FLOW DISTRIBUTION IN BOX BEAMS	2 21
TAPERED BEAMS	
REAMS WITH VARIABLE FLANGE AREAS	2 21
BEAMS WITH UNSYMMETRICAL CROSS SECTIONS	2 21
	2 21
SHEAR FLOW IN LINSYMMETRICAL BEAMS	2 21
REAMS WITH VARVING CROSS SECTIONS	2.21
CODECTION OF WING BENDING MOMENTS FOR SWEEDBACK	2.22
DISTRIBUTION OF CONCENTRATED LOADS TO THIN WERS	2.22
	2.22
ANALYSIS OF WING RIPS	2.22
	2.22
	۲. C C
	۲. כ. כ
TRUSSES WITH SINGLE REDUNDANCY	۲. כ. כ
TRUSSES WITH SINGLE REDUNDANCY	۲.۲۷ د. د.
	۲.2.23 د. دد د
URCULAR FUSELAGE RINGS	2.23
TRREGULAR FUSELAGE RINGS	
TORSION OF MULTI-CELL BOX BEAMS	
BEAM SHEAR IN IVIULII-CELL STRUCTURES	
ANALYSIS OF PRACTICAL MULTI-CELL STRUCTURES	
SPANWISE VARIATION OF WARPING DEFORMATION	2.23
NIIVII UJ-UI	
AIV SIECT DUILS	
AINC-3 STRENGTH OF IVIETAL AIRCRAFT ELEMENTS	
Interaction Curves	
Interaction Surfaces	
LUG LUADS - AXIAL AND TRANSVERSE INTERACTION	
Lug interaction Equation	

Product Engineering	3.10
JOHNSON-EULER COLUMN CURVES	3.11
COZZONE-MELCON NON-DIMENSIONAL COLUMN BUCKLING CURVES	3.12
TANGENT MODULUS FROM THE RAMBERG-OSGOOD EQUATION	3.13
SECANT MODULUS FROM THE RAMBERG-OSGOOD EQUATION	3.14
RAMBERG-OSGOOD STRESS-STRAIN CURVE	3.15
COLUMN STRENGTH OF STIFFENER WITH EFFECTIVE SHEET	3.16
DIAGONAL TENSION FACTOR	3.17
GRAPH FOR CALCULATING WEB STRAIN	3.18
ALLOWABLE SHEAR CORRECTION – CURVED WEBS	3.19
STIFFENER MINIMUM MOMENT OF INERTIA	
BUCKLING COEFFICIENTS	3.21
Shear Buckling Coefficients – Flat Plates	3.21
Figure C9.1 Axial Compressive Buckling Coefficient for Long Curved Plates	
Figure C9.2 Shear Buckling Coefficient for Long, Clamped, Curved Plates	3.23
Figure C9.3 Shear Buckling Coefficient for Wide, Clamped, Curved Plates	3.24
Figure C9.4 Shear Buckling Coefficient for Long, Simply Supported, Curved Plates	3.25
Figure C9.5 Shear Buckling Coefficient for Wide. Simply Supported. Curved Plates	
FLAT SHEET BUCKLING INTERACTION CURVES	
Combined Bending and Longitudinal Compression	
Combined Bending and Shear	
Combined Shear and Lonaitudinal Stress	
Compression. Bending and Shear $R_c < R_c$	
Compression, Bending and Shear, $R_c < R_c$	3.31
ROUND TUBES – INTERACTION CURVES	
Compression, Bending, Shear and Torsion	3.32
COLLAPSING SHEAR STRESS - ROUND HOLES WITH FORMED 45 DEGREE FLANGES	3 34
CURVED BEAMS	
	3 36
Peaking Factor for Pin Bending	3 36
Rolt Rending Strength	3 37
Tension Efficiency of Lugs	3 38
Shear-Bearing Efficiency Eactor Axially Loaded Luas	3 39
Tension Efficiency Factors Transverse Loads	3 40
CRIPPLING REDUCTION FACTOR - LOGGLES	3 41
	3 42
MINIMUM BUI & DIAMETER	3 43
MAXIMUM DEED DIAMETER	3 44
CARRY-OVER FACTOR	3 45
STIEFNESS FACTOR COFFEICIENT	3 46
FIXED-FND MOMENT COEFFICIENT	3 47
	3 48
RECTANGULAR DIATE	3 49
General Expression for the Deflection	3 49
Critical Value of the Compressive Force	3 /19
Granh	
Section Shade Ενατορ	3 50
Nomenclature - Strong Axis	2 50
Nomenclature - Weak Avis	2 50
Section Shape Factor I - Strong Avis	
Section Shape Factor II – Strong Axis	
Section Shape Factor III – Weak Avis	2 5 2
	2 5.7 ۲ ۲ ۲
Fauation 6-5	2 57

Marquerre and Kármán-Sechler	
FLANGE FLEXIBILITY FACTOR	
Old School Nomograph	
Web Buckling Angle, α = 35 degrees	
Web Buckling Angle, α = 40 degrees	
Web Buckling Angle, α = 45 degrees	
CHART FOR DETERMINING CORRECTION FACTOR R	
FORCED CRIPPLING STRESS OF STIFFENERS	
CALCULATION OF FASTENED-JOINT SPRING CONSTANTS	
UITIMATE BENDING STRENGTH	3.63
YIELD BENDING STRENGTH	3.64
RATIO OF MAXIMUM STRESS TO AVERAGE STRESS IN STIFFENER	3 65
4.0 REFERENCES	4.1
MMPDS-01	4.1
FEDERAL AVIATION REGULATION	4.1
FAR 25 Transport Category Aircraft	
Subpart C – STRUCTURE	
Subpart D - DESIGN AND CONSTRUCTION	
FUROPEAN AVIATION SAFETY AGENCY.	
FASA CS-25 Certification Specifications for Large Aeronlanes	4.1
Subnart C – STRUCTURE	
Subpart D - DESIGN AND CONSTRUCTION	л. Л 1
ΔΜΕΡΙΛΑΝ ΝΑΤΙΟΝΑΙ ΣΤΑΝΠΑΡΤΟ ΙΝΣΤΙΤΙΤΕ - ΔΝSΙ	
About	4.2
Search	
Books	
BUUKS	
General Strace Analysis	
Pipiliy Stress Anulysis	
Volume 1 NASA/TNIX-73305	
Volume II NASA/IMX-73306	
Volume III NASA/IMX-73307	
STRESS ANALYSIS MANUAL AFFDL-TR-69-42	
NACA REPORTS	
Beams	4.7
Shells	4.7
Shear Lag	4.7
Webs – Diagonal Tension	
Skin-Stringer Panels	
Curved Panels	4.9
Plates	
Shells	4.10
Cylinders	4.11
Spanwise Lift Distribution	4.11
Buckling	4.12
Box Beams	
Doublers	
Lightening Holes	
Technical Memorandums	
LUG ANALYSIS	4.16

Product Engineering	4.16
Efficiency Factor, Shear-Bearing	4.16
Efficiency Factor, Tension	4.16
Efficiency Factor, Transverse Loads	4.16
Average Area	4.17
Interaction of Axial and Transverse Load	4.17
MILITARY HANDBOOKS	4.18
MIL-HDBK	4.18
MIL-HDBK-17 Online	4.18
MMPDS-04	4.18
ARMY-NAVY-CIVIL COMMITTEE ON AIRCRAFT REQUIREMENTS (ANC)	4.18
MMPDS and MII-HDBK-5	4.19
Online Information Resource	4 19
Public Version	4 19
MMPDS	4 19
MII-HDRK-51	
History	л 10 л
NASGRO	/ 10
Fracture Mechanics and Eatique Crack Growth Anglusis Software	4.19 1 10
Fructure Mechanics and Faligue Crack Growth Analysis Software	4.19
Southwest Research Institute (SWRI)	4.19
ACTAL International Constant Technical Dublications	4.20
ASTM International – Special Technical Publications	4.20
American Society of Mechanical Engineers – ASME	4.20
ASM International (American Society for Metals)	4.20
Society for Experimental Mechanics – SEM	4.20
Miscellaneous	4.20
AFGRO	4.21
Crack Growth Life Prediction Program	4.21
AFGRO History	4.21
Download	4.21
CASI – CENTER FOR AEROSPACE INFORMATION	4.21
AIAA PUBLICATIONS AND PAPERS	4.21
Public Domain Aeronautical Software	4.21
Properties Of The U.S. Standard Atmosphere	4.21
COSPAR INTERNATIONAL REFERENCE ATMOSPHERE	4.21
Mathcad Files	4.21
MacNeal-Schwendler Documentation	4.22
NUMERICAL RECIPES	4.22
MIT OPENCOURSEWARE	4.22
ENG-TIPS FORUMS	4.22
Тіме	4.22
NASA LINKS	4.22
MAGAZINES	4.22
Aviation Week	4.22
Scientific American	4.22
NASA Tech Briefs	4.22
INTERNET	4.23
Elmer F. Bruhn	4.23
The Atanasoff-Berry Computer	4.23
John Vincent Atanasoff	4.23
Clifford E. Berry	4.23
Stephen Prokofyevich Timoshenko	4.24
Hardy Cross	4.24
Francis R. Shanley	4.24
,	

Joseph Raphson	
Pafnuty Lvovich Chebyshev	
Richard von Mises	
von Mises Yield Criterion	
Ludwig von Mises	
The Cathedral and the Bazaar	
Famous Curves Index	
Chebyshev Linkage	
Peaucellier-Lipkin Linkage	
Regulations.gov	
	5.1
GENERAL	5.1
Composites	5.4
Extensional Stiffness Matrix	5.4
Coupling Stiffness Matrix	
Bending Stiffness Matrix	5.4
Stiffness Matrix	5.5
Compliance Matrix	5.5
Transformation Matrix	5.5
Inverse of the Transformation Matrix	5.5
Reduced Stiffness Matrix	5.6
Transformed Reduced Stiffness Matrix	5.6
NACA Symbols – Diagonal Tension	5.7
Subscripts	5.8
Special Combinations	5.8
Curved Web Systems Only	5.9
Subscripts for Curved Web Systems	5.9
References	5.9
AERODYNAMICS	

Introduction

Analysis and Design of Flight Vehicle Structures by Elmer Franklin Bruhn may as well have been written in Latin when I purchased my first copy more than twenty-five years ago. It is arguably the most comprehensive book on aircraft stress analysis ever written.

While many of the methods in "Bruhn" have been overshadowed by Finite Element Analysis, they provide valuable insight into the fundamentals of aircraft design and an appreciation for the men and women that designed aircraft before John Vincent Atanasoff and Clifford Berry invented the electronic digital computer at Iowa State University. You won't find many aircraft stress analysts using the Moment Distribution (Hardy Cross) Method, Slope Deflection Method or the Methods of Elastic Weights, Dummy Unit-Loads, Moment Areas, Virtual Work or Influence Coefficients. While some of the methods are more than fifty years old, the lessons are timeless.

This book is a compilation of the mistakes, omissions and typographical errors my teammates and I have discovered in the last two decades. Keep in mind that "Bruhn" was written before electronic calculators and spreadsheets were invented. Note the slide rule disclaimer on page A13.13, column 2:

"The calculations in this example being done on a slide rule cannot provide exact checks."

The examples in "Bruhn" are condensed. The book could easily be expanded to fill a five volume set. I would organize it differently ... but as Marge and Homer Simpson might say, "It's easy to criticize ... and FUN TOO!"

If you insist on punishing yourself and throwing your life away by pursuing a career in aeronautical or aerospace engineering ... study *Analysis and Design of Flight Vehicle Structures* by Elmer F. Bruhn and the first edition of *Aircraft Structures* by David J. Peery. A lot of subjects are still Greek to me, but in the last thirty years I have learned this much pseudo-Latin:

ILLEGITIMI NON CARBORUNDUM.

Mange Takk!

1.0 Analysis and Design of Flight Vehicle Structures

Page A3.7 Moment of Inertia of an Airplane

Column 1 N.A.O.A. should be N.A.C.A. Thanks to Dr. Howard W. Smith.

Page A3.11 Properties of a Two-Cell Wing Beam Section

Table 9, Page A3.11

01	Stringer	Effective	Total							
Stringer	Area A	SKIN Area	Area A	v	Δv	∆v ²	¥	Δx	Δx ²	I _{xy} = A x v
	(in ²)	(in ²)	(in ²)	(in)	(in ²)	(in ³)	(in)	(in ²)	(in ³)	(in ⁴)
1	0.110	0.031	0.141	4.00	0.563	2.252	-33.15	-4.665	154.640	-18.659
2	0.110	0.031	0.141	6.05	0.851	5.151	-29.28	-4.120	120.642	-24.928
3	0.300	0.080	0.380	7.00	2.660	18.620	-24.85	-9.443	234.659	-66.101
4	0.130	0.038	0.168	7.37	1.241	9.147	-21.18	-3.567	75.543	-26.287
5	0.130	0.038	0.168	7.55	1.271	9.599	-16.60	-2.795	46.404	-21.106
6	0.130	0.038	0.168	7.50	1.263	9.473	-12.60	-2.122	26.735	-15.914
7	0.130	0.038	0.168	7.30	1.229	8.974	-8.60	-1.448	12.455	-10.572
8	0.130	0.038	0.168	6.90	1.162	8.018	-4.00	-0.674	2.694	-4.648
9	0.240	0.050	0.290	6.50	1.885	12.253	-0.35	-0.102	0.036	-0.660
10	0.070	0.100	0.170	-3.30	-0.561	1.851	-33.25	-5.653	187.946	18.653
11	0.070	0.100	0.170	-4.90	-0.833	4.082	-29.28	-4.978	145.744	24.390
12	0.130	0.150	0.280	-5.95	-1.666	9.913	-24.85	-6.958	172.906	41.400
13	0.110	0.200	0.310	-7.40	-2.294	16.976	-18.70	-5.797	108.404	42.898
14	0.110	0.200	0.310	-8.13	-2.520	20.490	-12.42	-3.850	47.819	31.302
15	0.110	0.200	0.310	-8.62	-2.672	23.034	-6.10	-1.891	11.535	16.300
16	0.240	0.110	0.350	-8.87	-3.105	27.537	-0.35	-0.123	0.043	1.087
		_								
		Σ	3.693		-1.525	187.368		-58.184	1348.205	-12.843

 $\overline{x} = -\frac{58.184}{3.693} = -15.753 in \qquad \overline{y} = -\frac{1.525}{3.693} = -0.413 in$ $I_x = A \ y^2 - A \ \overline{y} = 187.368 in^4 - 3.693 in^2 \ (-0.413 in \)^2 = 186.738 in^4$ $I_y = A \ x^2 - A \ \overline{x} = 1,348.205 in^4 - 3.693 in^2 \ (-15.753 in \)^2 = 431.604 in^4$ $I_{xy} = I_{xy} - A \ \overline{x} \ \overline{y} = -12.843 in^4 - 3.693 in^2 \ (-15.753 in \) \ (-0.413 in \) = -36.867 in^4$ $\tan 2\phi = \frac{2 \ I_{xy}}{I_y - I_x} = \frac{2 \ (-36.867 in^4 \)}{431.604 in^4 - 186.738 in^4} = -0.301$ $2\phi = -0.292 \text{ radians} = 16.758 \ \phi = -0.146 \text{ radians} = -8.379 \ \sin \phi = -0.146 \ \cos \phi = 0.989$ $I_{xp} = I_x \ (\cos \phi \)^2 + I_y \ (\sin \phi \)^2 - 2 \ I_{xy} \ \sin \phi \ \cos \phi$ $I_{xp} = 186.738 in^4 \ (0.989 \)^2 + 431.604 in^4 \ (-0.146 \)^2 - 2 \ (-36.867 in^4 \) \ (-0.146 \) \ (0.989 \)$ $I_{xp} = 181.308 in^4$

Page A4.3 Motion of Rigid Bodies

Column 1, Equation 3 $v - v_0^2 = 2 a s$ should be $v^2 - v_0^2 = 2 a s$ Thanks to SparWeb on the www.eng-tips.com website.

Page A4.13 Dynamic Effect of Air Gusts

Column 2, paragraph 2 "a air load" *should be* "an air load" Thanks to Dr. Howard W. Smith.

Page A5.22 Equations for a Compressive Axially Loaded Strut

Column 2

$$i = \frac{1}{P} \left(\frac{M_2 - M_1}{L} - \frac{wL}{2} + wx - \frac{C_1}{j} \cos \frac{x}{j} + \frac{C_2}{j} \sin \frac{x}{j} \right)$$

should be

$$\theta_{1} = \frac{1}{P} \left(\frac{M_{2} - M_{1}}{L} - \frac{wL}{2} + wx - \frac{C_{1}}{j} \cos \frac{x}{j} + \frac{C_{2}}{j} \sin \frac{x}{j} \right)$$

Thanks to Dr. Howard W. Smith.

Page A5.23 Beam-Columns

Table A5.I, Case III, Distributed Load, No End Moments

I use the following

$$C_{1} = w j^{2} \tan\left(\frac{L}{2 j}\right) \qquad C_{2} = w j^{2} \qquad f(x) = -w j^{2} \qquad \text{instead of}$$

$$C_{1} = \frac{w j^{2} \left[\cos\left(\frac{L}{j} - 1\right)\right]}{\sin\frac{L}{j}} \qquad C_{2} = -w j^{2} \qquad f(x) = -w$$

Table A5.I, Case V, Concentrated Side Load, No End Moments

Equation for Point of Maximum Bending Moment

$$\tan\frac{x}{j} = \frac{C_1}{C_2}$$

Maximum Span Bending Moment

$$M_{\rm max} = \left(C_1^2 + C_2^2 \right)^{\frac{1}{2}}$$

Should be

Maximum Bending Moment

Point of Maximum Bending Moment

If
$$b > \frac{\pi j}{2}$$
 $M_{\max} = \frac{W j \sin\left(\frac{a}{j}\right)}{\sin\left(\frac{L}{j}\right)}$ $at x = L - \frac{\pi j}{2}$

If
$$b < \frac{\pi j}{2}$$
 $M_{\max} = \frac{W j \sin\left(\frac{a}{j}\right)}{\sin\left(\frac{L}{j}\right)} \sin\left(\frac{b}{j}\right)$ $at x = a$

Page A5.28 Biplane Wing Spar Example

Column 2, "Substituting in equation (A)"
$$\tan \frac{x}{j} = \frac{D_2 - D_1 \cos \frac{L}{j}}{D_1 \sin \frac{L}{j}}$$

$$= -\frac{50180 - (-55505 x - .26981)}{-55505 x .96290} = \frac{-65156}{-53441} = 1.2192 \text{ should be}$$
$$= -\frac{50,198 - [-55,523 (-0.26952)]}{-55,523 (0.962996)} = \frac{-65,162}{-53,469} = 1.2187$$

Figure A5.67

Page A5.29 Beam-Column, Landing Gear

Bruhn, Example Problem 2, page A5.29

$$\tan \frac{x}{j} = \frac{M_2 - M_1 \cos \frac{\pi}{j}}{M_1 \sin \frac{L}{j}} \qquad \qquad If \ M_1 = 0, \quad x = \frac{\pi \ j}{2} \qquad \qquad M_{\max} = \frac{M_2}{\sin \frac{L}{j}}$$

Beam-Column, Landing Gear

Bruhn, Example Problem 2, page A5.29

Figure A5.70

Beam-Column, Landing Gear

Bruhn, Example Problem 2, page A5.29

Page A6.2 Transmission of Power by a Cylindrical Shaft

Elmer F. Bruhn, Analysis and Design of Flight Vehicle Structures, page A6.2

Average Load on Surface, W = 40 lb / ft^2

Page A6.5 Torsional Stiffness

Elmer F. Bruhn, Analysis and Design of Flight Vehicle Structures, page A6.5

See also Raymond J. Roark, Formulas for Stress and Strain, Table 10.1, Case 17 and Case 18. Thanks to Frank Dylla.

1

2

3

4

5

6 Ratio, b / t 7

8

9

10

Page A7.7 Castigliano's Theorem

Note: Do NOT use Castigliano's theorem for non-linear problems.

Member	Length L (feet)	Area A (in ²)	Modulus E (psi)	AE	Load, S (lb)	S² L / A E (x P ² x 10 ⁻⁶)	
	40	4.70	0.005.07	400.0	450	0.000	
	40 50	4.70 0.875	2.90E+07	136.3	-1.5 P 2 5 P	0.660	
AD	63.25	0.875	1.35E+07	11.813	1.581 P	20.455	
OC	84.85	4.70	2.90E+07	136.3	-2.121 P	2.801	
					Σ	43.302	P ² x 10

Strain Energy

$$U = \frac{1}{2} \frac{S^2 L}{A E} = \frac{43.30 P^2 x 10^{-6}}{2} lb - ft$$

Castigliano's Theorem

$$\delta_P = \frac{\partial U}{\partial P} = 2\left(\frac{43.30 P \times 10^{-6}}{2}\right) = 43.3 \times 10^{-06} P$$
 feet

Example

For P = 10,000 lb

Deflection δ = 10,000 lb (4.33 x 10⁻⁵) feet = 0.433 feet

$$\delta$$
 = 0.433 feet (12 inches / foot) = 5.2 inches

Page A7.11 Truss with Pinned Joints

Elmer F. Bruhn, Analysis and Design of Flight Vehicle Structures, page A7.11.

Check the last two columns in Table A7.3 for slide rule errors.

Member	Length, L (in)	A	AE (x10 ⁻⁶)	L/AE (x10 ⁻⁶)	Load, S (Ib)	Unit Load, u₁	Unit Load, u ₂	<u>S u₁ L</u> AE (x10 ³)	<u>S u₂ L</u> AE (x10 ³)
ab	30	0.456	4.785	6.270	10,500	1.50	0	9.405	0
bc	30	0.293	3.074	9.759	2,250	0	0	0	0
cd	30	0.293	3.074	9.759	2,250	0	0	0	0
ef	30	0.511	5.366	5.591	-5,250	-0.75	1.0	2.097	-2.796
fg	30	0.511	5.366	5.591	-5,250	-0.75	1.0	2.097	-2.796
gh	30	0.331	3.480	8.621	0	0	1.0	0	0
be	50	0.967	10.150	4.926	-8,750	-1.25	0	5.131	0
bg	50	0.331	3.480	14.368	5,000	1.25	0	8.552	0
dg	50	0.511	5.365	9.320	-3,750	0	0	0	0
bf	40	0.293	3.074	13.012	2,000	0	0	0	0
cg	40	0.293	3.074	13.012	-1,000	0	0	0	0
dh	40	0.293	3.074	13.012	2,000	0	0	0	0
							Σ =	27.3	-5.6

$$\delta_1 = \sum \frac{S \ u_1 \ L}{A \ E} = \frac{27.3}{1,000} = 0.027 \text{ inch } \delta_2 = \sum \frac{S \ u_2 \ L}{A \ E} = -\frac{5.6}{1,000} = -0.006 \text{ inch}$$

Bruhn Errata

Page A7.14 Virtual Work

I prefer to use G for shear modulus rather than E_s .

$$\delta_{total} = \int_0^L \frac{V v}{A G} dx \qquad \text{etc}$$

Page A7.15 Dummy Unit Load

Example Problem 19

I've added the x coordinates to Figure A7.22.

Page A7.16 Tapered Shear Beam

Method of Virtual Work

Determine the deflection at Point G.

Shear Flow

	Position	Height		Shear Flow				
	x	h	ho	qo	h _o / h	q _{avg}	fs	
-	(in)	(in)	(in)	(lb/in)		(lb/in)	(psi)	
	0	20	18 333	80.33	0 917	67.5	2 109	$68 = (18.333/20)^2 \times 80.33$
	1	19.92	18.333	80.33	0.920	68.1	2,127	
	2	19.83	18.333	80.33	0.924	68.6	2,145	
	3	19.75	18.333	80.33	0.928	69.2	2,163	
	4	19.67	18.333	80.33	0.932	69.8	2,181	
	5	19.58	18.333	80.33	0.936	70.4	2,200	
	7	19.50	18 333	80.33	0.940	71.0	2,219	
	8	19.33	18.333	80.33	0.948	72.2	2.257	
Bay 1	9	19.25	18.333	80.33	0.952	72.9	2,277	
	10	19.17	18.333	80.33	0.956	73.5	2,296	74 = 18.333 / 20 x 80.33
	11	19.08	18.333	80.33	0.961	74.1	2,317	
	12	19.00	10.333	80.33	0.965	74.0 75.4	2,337	
	14	18 84	18 333	80.33	0.973	76.1	2,357	
	15	18.75	18.333	80.33	0.978	76.8	2,399	
	16	18.67	18.333	80.33	0.982	77.5	2,421	
	17	18.59	18.333	80.33	0.986	78.2	2,443	
	18	18.50	18.333	80.33	0.991	78.9 70.0	2,465	
	20	18 333	18 333	80.33	1 000	80.3	2,407	
	20	18.333	16.667	97.20	0.909	80.3	2,510	80 = (16.667 / 18.333) ² x 97.20
	21	18.25	16.667	97.20	0.913	81.0	2,532	
	22	18.17	16.667	97.20	0.917	81.8	2,556	
	23	18.09	16.667	97.20	0.921	82.5	2,579	
	24	18.00	16.667	97.20	0.926	83.3	2,603	
	25	17.52	16.667	97.20	0.930	84.9	2,627	
	27	17.75	16.667	97.20	0.939	85.7	2,677	
	28	17.67	16.667	97.20	0.943	86.5	2,702	
Bay 2	29	17.59	16.667	97.20	0.948	87.3	2,728	
	30	17.50	16.667	97.20	0.952	88.1	2,754	88 = 16.667 / 18.333 x 97.20
	31	17.42	16.667	97.20	0.957	09.0 89.8	2,700	
	33	17.25	16.667	97.20	0.966	90.7	2,834	
	34	17.17	16.667	97.20	0.971	91.6	2,861	
	35	17.09	16.667	97.20	0.975	92.5	2,889	
	36	17.01	16.667	97.20	0.980	93.4	2,918	
	31 22	16.92	16.667	97.20	0.985	94.3	2,947	
	39	16.76	16 667	97.20	0.995	96.2	3 005	
	40	16.667	16.667	97.20	1.000	97.2	3,038	$97 - (45 (46 667)^2 + 499)$
	40	16.667	15.00	120	0.900	97.2	3,038	$97 = (15716.667)^{-1} \times 120$
	41	16.59	15.00	120	0.904	98.1	3,066	
	4Z 43	16.51	15.00	120	0.909	99.1	3,097	
	43	16.34	15.00	120	0.918	100.1	3 160	
	45	16.26	15.00	120	0.923	102.2	3,193	
	46	16.17	15.00	120	0.927	103.2	3,226	
	47	16.09	15.00	120	0.932	104.3	3,259	
Bay 2	48	16.01	15.00	120	0.937	105.4	3,293	
Day J	49 50	15.52	15.00	120	0.942	100.5	3,363	$108 = 15 / 16 667 \times 120$
	51	15.76	15.00	120	0.952	108.7	3,398	
	52	15.67	15.00	120	0.957	109.9	3,434	
	53	15.59	15.00	120	0.962	111.1	3,471	
	54	15.51	15.00	120	0.967	112.3	3,508	
	55	15.42	15.00	120	0.972	113.5	3,546	
	57	15.26	15.00	120	0.983	116.0	3,624	
	58	15.18	15.00	120	0.988	117.2	3,664	
	59	15.09	15.00	120	0.994	118.5	3,704	
	60	15.00	15.00	120	1.000	120.0	3,750	120 = 1,800 lb / 15 inches
							I	

ı.

Real Loads

Virtual Loads

Data

Member	L	A
(Flange)	(in)	(in ²)
AB C C E F G H	20.017 20.017 20.017 20.017 20.017 20.017	0.15 0.15 0.15 0.15 0.15 0.15 0.15
DH	15.000	0.05
CG	16.667	0.08
BF	18.333	0.08

E = 10.0 E6 G = 3,846,154 psi P

P = 1,800 lb

Bruhn Errata

Spar Caps and Stiffeners

1	2	3	4	5	6	7	8	9	10
Member (Flange)	S _i	S _j	u _i	u _j	<u>2u_i + u_j 6</u>	<u>u_i + 2 u_j 6</u>	L/AE (x10 ⁶)	Columns (2)(6)+(3)(7)	Columns (8) x (9)
AB BC CD EF GH CG BF	3 P 2.184 P 1.201 P -3 P -2.184 P -1.201 P 1 P 0 P 0 P 0 P	2.184 P 1.201 P 0 P -2.184 P -1.201 P 0 P 0 P 0 P 0 P	2.000 1.092 0 -2.000 -1.092 0 0 1.000 0	1.092 0 -1.092 0 0 0 0 0 0	0.849 0.364 0 -0.849 -0.364 0 0 0.333 0	0.697 0.182 0 -0.697 -0.182 0 0 0.167 0	13.34 13.34 13.34 13.34 13.34 13.34 30.00 20.83 22.92	4.069 P 1.013 P 0 P 4.069 P 1.013 P 0 P 0 P 0 P 0 P 0 P	54.30 P 13.52 P 0 P 54.30 P 13.52 P 0 P 0 P 0 P 0 P 0 P

Σ 135.64 P x 10⁻⁶

Spar Webs

1	2	3	4	5	6	
	Shear Flow	Shear Flow	Panel Area		Columns	
Member	q avg	q _{avg}	A	1/Gt	(2)(3)(4)(5)	
(Web)	(lb / in)	(lb / in)	(IN)	(X 10°)		
A-B-E-F	0.0409 P	0.0455	383.33	8.125	5.792 P	
B-C-F-G	0.0491 P	0.0545	350.00	8.125	7.615 P	
C-D-G-H	0.0600 P	0	-	-	0 P	
	Real	Virtual				
				Σ	13.41 P	x 10 ⁻
						1

Deflection at Point G

$$\delta_{G} = \int \frac{S \, u \, dx}{A \, E} + \int \int \frac{q \, \overline{q}}{G \, t} \, dx \, dy$$

$$\int_{0}^{L} \frac{S \, u \, dx}{A \, E} = \frac{L}{A \, E} \left(\frac{S_{i} \, u_{i}}{3} + \frac{S_{i} \, u_{j}}{6} + \frac{S_{j} \, u_{i}}{6} + \frac{S_{j} \, u_{j}}{3} \right)$$

$$\int \int \frac{q \, \overline{q}}{G \, t} \, dx \, dy \approx q_{avg} \, \overline{q}_{avg} \, \frac{A}{G \, t}$$

$$\delta_{G} = (135.64 \, \text{P} + 13.41 \, \text{P}) \, 10^{-6} = 139.04(1,800 \, \text{lb}) \, 10^{-6} = 0.268 \, \text{inch}$$

 δ $_{\rm G}$ = 0.268 inch

See Analysis and Design of Flight Vehicle Structures, pages A7.16 and A15.27.

Shear Flow in Tapered Webs

See Aircraft Structures, First Edition, pages 197-200

Page A7.24 Influence Coefficients - Truss with Pinned Joints

Deflections at points B, C, E and F given:

$$A_1 = 0.217 \text{ in}^2 \quad A_2 = 0.217 \text{ in}^2 \quad A_3 = 0.109 \text{ in}^2 \quad A_4 = 0.171 \text{ in}^2 \quad A_5 = 0.370 \text{ in}^2$$
$$A_6 = 0.109 \text{ in}^2 \quad A_7 = 0.171 \text{ in}^2 \quad A_8 = 0.370 \text{ in}^2 \quad A_9 = 0.109 \text{ in}^2 \quad E = 10 \text{ E6 psi}$$

Graphic

Unit Load Distribution

	0	1.00	0	1.00
	0	0	0	0
	0	-1.00	0	0
	0	1.25	0	1.25
[G _{im}] =	0	-1.031	0	-1.031
	-1.000	-0.750	0	-0.750
	1.131	0.849	1.131	0.849
	-0.825	-1.649	-0.825	-1.649
	0.20	0.40	0.20	0.40
	1			

Transpose

	o o	0	0	0	0	-1	1.131	-0.82	0.20
	1	0	-1	1.25	-1.031	-0.75	0.85	-1.65	0.40
[G _{im}] =	0	0	0	0	0	0	1.131	-0.82	0.20
	1	0	0	1.25	-1.031	-0.75	0.85	-1.65	0.40

Bruhn Errata

Flexibility Coefficients

	—								_
	92.17	0	0	0	0	0	0	0	0
	0	92.17	0	0	0	0	0	0	0
	0	0	137.61	0	0	0	0	0	0
	0	0	0	146.20	0	0	0	0	0
$[\alpha_{ij}] = 1/E$	0	0	0	0	55.72	0	0	0	0
	0	0	0	0	0	183.49	0	0	0
	0	0	0	0	0	0	165.41	0	0
	0	0	0	0	0	0	0	55.72	0
	0	0	0	0	0	0	0	0	229.36

Multiply

	□ o	0	0	0	0	-183.49	187.13	-45.95	45.87
	92.17	0	-137.61	182.75	-57.43	-137.61	140.35	-91.89	91.74
$[\alpha_{ij}][G_{im}] =$	0	0	0	0	0	0	187.13	-45.95	45.87
	92.17	0	0	182.75	-57.43	-137.61	140.35	-91.89	91.74

Matrix Triple Product

[G _{im}] [α _{ij}] [G _{im}] ^T = 1/E	442.3	390.5	258.8	390.5
	390.5	928.0	252.9	790.4
	258.8	252.9	258.8	252.9
	390.5	790.4	252.9	790.4
	_			

Deflections

$ \left\{ \begin{array}{c} \delta_1 \\ \delta_2 \\ \delta_3 \\ \delta_4 \end{array} \right\} = 1/E \begin{bmatrix} 442.3 & 390.5 & 258.8 \\ 390.5 & 928.0 & 252.9 \\ 258.8 & 252.9 & 258.8 \\ 390.5 & 790.4 & 252.9 \end{bmatrix} $	$\begin{array}{c} 390.5\\790.4\\252.9\\790.4 \end{array} \qquad \left\{ \begin{array}{c} 2,500\\2,000\\800\\450 \end{array} \right\} \qquad = \qquad \left\{ \begin{array}{c} 0.227\\0.339\\0.147\\0.312 \end{array} \right\} \text{ in }$
---	--

Three Load Cases

	δ _B δc δ _E δ _F	≻ = 1/E	442.3 390.5 258.8 390.5	390.5 928.0 252.9 790.4	258.8 252.9 258.8 252.9	390.5 790.4 252.9 790.4	×	2,500 2,000 800 450	-1,200 -800 -2,100 -1,750	1,800 1,470 -1,200 -1,100	}= 1/E	2,269,486 3,390,247 1,473,615 3,115,017	-2,070,007 -3,125,245 -1,498,906 -3,015,154	630,039 894,179 248,846 691,885	
l	δ _B δ _C δ _E δ _F	> = 1/E	442.3 390.5 258.8 390.5	390.5 928.0 252.9 790.4	258.8 252.9 258.8 252.9	390.5 790.4 252.9 790.4		1 2,500 2,000 800 450	2 -1,200 -800 -2,100 -1,750	3 1,800 1,470 -1,200 -1,100	=	0.227 0.339 0.147 0.312	-0.207 -0.313 -0.150 -0.302	0.063 0.089 0.025 0.069	1

Page A7.25 Influence Coefficients - Landing Gear Unit

Flexibility Coefficients

 $\alpha_{44} = L^3 / 3 E I = \frac{15,552}{E I} / E I$ rounded up 15,600 / E I for E = 10 E6 psi and G = 3,846,154 psi Polar Moment of Inertia J = I_x + I_y = 2 I E I / G J = (10 * I) / (3.846154 * 2 I) = 1.30

G J = E I / 1.30

$\alpha_{\rm ac} = \frac{L_{\rm AB}}{1.30}$	<u>(3 in)</u> _	3.90	α	$= \frac{L_{BC}}{1.3}$	30 (36 i	<u>n)</u> _ <u>46.</u>	80	
$^{\circ}_{22}$ GJ E	El	EI	\$\$77	I				
	9	0	0	0	0	0	0	0]
	0	3.900	0	0	0	0	0	0
	0	0	9	0	0	0	0	0
	0	0	0	15,552	648	0	0	0
[α _{ii}] = 1/ΕΙ	0	0	0	648	36	0	0	0
,	0	0	0	0	0	36	0	648
	0	0	0	0	0	0	46.800	0
	0	0	0	0	0	648	0	15,552

Unit Load Distribution

[G ₇₃] = 3 cos 2	0 [°] = <mark>2.819</mark>	instead of	2.810		[G ₆₂] =	= – cos	20 [°] =	<mark>– 0.940</mark>	instead of – 0.937
	□ 1	0	0	٦					
	0	1	0						
	0	0	1						
	0.342	0	0						
[G _{im}] =	3	0	0						
	0	-0.940	1.026						
	0	0.342	2.819						
	0	0	1						
	L								
Transpose									

	1	0	0	0.3420	3	0	0	0
[G _{im}] ^T =	0	1	0	0	0	-0.9397	0.3420	0
	0	0	1	0	0	1.0261	2.8191	1

Multiply

	9	0	0	7,263	329.6	0	0	0
$\left[\alpha_{ij}\right] \left[G_{im}\right]^{T} = 1/EI$	0	3.896	0	0	0	-33.829	15.991	-608.921
	0	0	9	0	0	684.9	131.8	16,216.9

Matrix Triple Product

		9	0	0	
$[G_{im}][\alpha_{ij}][G_{im}]^{T}$	= 1/EI	0	3.900	0	
,		0	0	9	

Page A7.26 Influence Coefficients – Tapered Shear Beam

Thin Web Aluminum Beam Determine the deflection at Point G (See Bruhn page A7.26)

q^{9} q^{6} q^{3} q^{3} q^{2} q^{2

Free Body Diagram

Flexibility Coefficients

Spar Webs

			Length	Area	Thickness	ατ _{ii}	α. _{jj}
Panel	h 1 (in)	h 2 (in)	L (in)	S (in ²)	t (in)	S / G t	(\mathbf{h}_1 / \mathbf{h}_2) ² \mathbf{a}_{ii}
Bay 1 Spar Web	18.33	20.00	20	383.3 in ²	0.032 in	31,1467 E	26,171 / E
Bay 2 Spar Web	16.67	18.33	20	350.0 in ²	0.032 in	28,437 / E	23,502 / E
Bay 3 Spar Web	15.00	16.67	20	316.7 in ²	0.032 in	25,7297 E	20,841 / E

Spar Caps and Stiffeners

		Spar Caps					Stiffeners				
	AB	BC	CD				BF	CG	н		
L	20.017	20.017	20.017	in	α _{ii} = L / 3AE	L	18.333	16.667	15.00	in	
Ai	0.150	0.150	0.150	in ²	α _{ij} = L / бАЕ	A _i	0.080	0.080	0.050	in²	
Ai	0.150	0.150	0.150	in²		A _i	0.080	0.080	0.050	in²	
α _{ii}	44.48	44.48	44.48	/ E		α ;;	76.39	69.44	100	/ E	
α _{ii}	22.24	22.24	22.24	/ E		α _{ii}	38.19	34.72	50	/ E	
α _{ii}	44.48	44.48	44.48	/ E		α _{ii}	76.39	69.44	100	/ E	

Matrix Form

		10	0	0	0	0	0	0	0	0
		0	2,084.1	0	0	0	0	0	0	0
		0	0	17.79	0	0	4.45	0	0	0
		0	0	0	6.94	0	0	0	0	0
[α _{ij}] =	10 / E	0	0	0	0	2,350.2	0	0	0	0
		0	0	4.45	0	0	17.79	0	0	4.45
		0	0	0	0	0	0	7.64	0	0
		0	0	0	0	0	0	0	2,617.1	0
		0	0	0	0	0	4.45	0	0	8.90

Unit Load Distribution

$$[G_{im}] = \begin{bmatrix} 1 & 0 & 0 \\ 0.0667 & 0 & 0 \\ 1.2010 & 0 & 0 \\ 0 & 1 & 0 \\ 0.0540 & 0.0600 & 0 \\ 2.1837 & 1.0919 & 0 \\ 0 & 0 & 1 \\ 0.0446 & 0.0496 & 0.0545 \\ 3 & 2 & 1 \end{bmatrix}$$

Transpose

	1	0.067	1.201	0	0.054	2.1837113	0	0.045	3
[G _{im}] ^T =	0	0	0	1	0.060	1.092	0	0.050	2
	0	0	0	0	0	0	1	0.055	1

Multiply

$[\alpha_{ii}] [G_{im}]^{T}$	=	10 0	138.94 0	31.08 4.86	0 6.94	126.91 141.01	57.54 28.32	0 0	116.80 129.77	36.40 22.65
,		0	0	0	0	0	4.45	7.64	142.75	8.90

Bruhn Errata

Unit Load Distribution

Deflections

$$\begin{cases} \delta_{H} \\ \delta_{G} \\ \delta_{F} \end{cases} = 10 / E \begin{bmatrix} 303.5 & 149.0 & 42.8 \\ 149.0 & 98.1 & 29.7 \\ 42.8 & 29.7 & 24.3 \end{bmatrix} \begin{cases} 1,800 \\ 0 \\ 0 \\ 0 \end{cases}$$
$$\begin{cases} \delta_{H} \\ \delta_{G} \\ \delta_{F} \end{cases} = 10 / E \begin{cases} 546,352 \\ 268,275 \\ 76,994 \end{cases} = \begin{cases} 0.546 \\ 0.268 \\ 0.077 \end{cases} \text{ in }$$

Deflection at Point G

δ_{G} = 0.268 in

See Analysis and Design of Flight Vehicle Structures, pages A7.22, A7.26 and A15.27.

Page A7.28 Method of Elastic Weights - Mohr's Method

Column 1

"For a unit load at point b, Fig. d"	should be	"For a unit load at point B, Fig. d"
"For deflection of point c, draw"	should be	"For deflection of point C, draw"
Column 2		
" at points b and c due"	should be	" at points B and C due"
" acting at point a"	should be	" acting at point A"

Likewise in paragraph 2 change each instance of "b" to "B" and "c" to "C". Thanks to Dr. Howard W. Smith.

Page A7.29 Method of Elastic Weights – Mohr's Method

Column 1, Figure A7.42a Add $M_{\text{max}} = \frac{w L^2}{8}$ to the moment diagram.

Slope at Supports Slope at Center

$$\alpha_{\text{supports}} = \frac{wL^3}{24EI} \qquad \qquad \alpha_{\text{center}} = \left(\frac{wL^3}{24} - \frac{wL^3}{24}\right)\frac{1}{EI} = 0$$

Area of Each Half of the Moment Curve

Area =
$$\frac{2}{3} b h = \frac{2}{3} \left(\frac{L}{2}\right) \frac{w L^2}{8} = \frac{w L^3}{24}$$

Deflection at Center of Beam

$$\delta_{center} = \left[\frac{wL^3}{24}\left(\frac{L}{2}\right) - \frac{wL^3}{24}\left(\frac{3L}{16}\right)\right]\frac{1}{EI} = \frac{5}{384}\left(\frac{wL^4}{EI}\right)$$
$$\delta_{center} = \frac{5}{384}\left(\frac{wL^4}{EI}\right)$$

Slope at Supports

Slope at Center

$$\alpha_{\text{supports}} = \frac{wL^3}{24EI} \qquad \qquad \alpha_{\text{center}} = \left(\frac{wL^3}{24} - \frac{wL^3}{24}\right) \frac{1}{EI} = 0$$

Page A7.29 Mohr's Method – Cantilever Wing Example

Column 2, Figure below Table A7.6 ... I believe the values of the reactions have been swapped. I calculate the left reaction at 299,679 lb (vs. 299,090) and the right reaction at 225,919 lb (vs. 226,570).

Figure A7.43

	Table A7.6								
	StripdsMidpointMomentInertiaElaNo.(in)(in)(midpoint)(in ⁴)Loa								
с	1	10	5	11,563	5.5	21,023			
	2	10	15	20,063	6.5	30,865			
R	3	10	25	31,063	7.5	41,417			
	4	10	35	44,563	8.5	52,426			
	5	10	45	60,563	9.5	63,750			
В	6	10	55	79,063	12	65,885			
	7	10	65	100,063	16	62,539			
	8	10	75	123,563	20	61,781			
Α	9	10	85	149,563	24	62,318			
	10	10	95	178,063	28	63,594			

* Elastic Load = M ds / I

Page A7.30 Mohr's Method – Seaplane Cantilever Wing Example

Column 1, Example Problem 34, should divide each δ_c by 1,000. Using 20.02 in lieu of 20, I get a deflection of C (divided by 1,000) equal to 517,867 / E I. Using 266.67 (267), 576.47 (576) yields 433.33 instead of 433 and 123.53 instead of 124. This gives me a tip deflection (divided by 1,000) of **102,310,667** / **E I** in lieu of 102,200,000 / E I.

Page A7.31 Moment Area Method – Seaplane Cantilever Wing Example

Column 2, Example Problem 36, Last Paragraph.

- "... and subtract deflection of a with respect to tangent at C ." should be
- "... and subtract deflection of A with respect to tangent at C."

Using values in the previous problem, 19.98 for 20 and 719.98 for 720 \dots gives me a tip deflection (divided by 1,000) of **102,310,667 / E I** in lieu of 102,180,000 / E I.

Figure A7.46

Wing Deflection by the Moment Area Method

OUTPUTDeflection of A $\delta/1.000$ 517,867/ E I(with respect to C)Deflection of D $\delta/1.000$ 102.828,533/ E I(with respect to tangent at C)Deflection of Tip $\delta/1.000$ 102.310.667/ E I

Page A7.32 Moment Area Method – Fixed Beam

Figure A7.47

$$Pa(L-a)$$
 should be $\frac{Pa(L-a)}{L}$

Example Problem 37

Bruhn Errata

		—		1		
MA	_	0.1333	-0.0067	-28,350	-819	in-lb
М _в	-	0.0667	0.0067	-444,150	-1,071	in-lb

 $M_A = -819 \text{ in-lb}$ versus $M_A = -816 \text{ in-lb}$ $M_B = -1,071 \text{ in-lb}$ versus $M_B = -1,074 \text{ in-lb}$

Bruhn Errata

Multiply

	0	0	0	0	0	-6.667	20	-5	0
[][] ^T =	10	0	-6.667	20	-6.667	-6.667	20	-10	0
$[\alpha_{ij}][G_{im}] =$	0	0	0	0	0	0	20	-5	0
	10	0	0	20	-6.667	-6.667	20	-10	0

Matrix Triple Product

$$\begin{bmatrix} G_{im} \end{bmatrix} \begin{bmatrix} \alpha_{ij} \end{bmatrix} \begin{bmatrix} G_{im} \end{bmatrix}^{T} = 1/E \begin{bmatrix} 39.95 & 44.95 & 33.28 & 44.95 \\ 44.95 & 106.57 & 38.28 & 99.90 \\ 33.28 & 38.28 & 33.28 & 38.28 \\ 44.95 & 99.90 & 38.28 & 99.90 \end{bmatrix}$$

Deflections

$$\left\{ \, \delta_{mk} \, \right\} \, = \, \frac{1}{E} \left[\begin{array}{ccccc} 39.95 & 44.95 & 33.28 & 44.95 \\ 44.95 & 106.57 & 33.28 & 99.90 \\ 33.28 & 38.28 & 33.28 & 38.28 \\ 44.95 & 99.90 & 38.28 & 99.90 \end{array} \right] \left\{ \begin{array}{c} 1,000 & 300 \\ 500 & 700 \\ 800 & 400 \\ 400 & 600 \end{array} \right\}$$

Greatest Deflection of Point 4

For E = 10.0×10^{6} psi

$$\begin{cases} \delta_1 \\ \delta_2 \\ \delta_3 \\ \delta_4 \end{cases} = \frac{1}{10(10^6)} \begin{bmatrix} 39.95 & 44.95 & 33.28 & 44.95 \\ 44.95 & 106.57 & 33.28 & 99.90 \\ 33.28 & 38.28 & 33.28 & 38.28 \\ 44.95 & 99.90 & 38.28 & 99.90 \end{bmatrix} \begin{bmatrix} 1,000 & 300 \\ 500 & 700 \\ 800 & 400 \\ 400 & 600 \end{bmatrix} = \begin{bmatrix} 0.011 & 0.008 \\ 0.017 & 0.016 \\ 0.009 & 0.007 \\ 0.017 & 0.016 \end{bmatrix}$$

Load Case 1

 $\delta_1 = 0.011$ in $\delta_2 = 0.017$ in $\delta_3 = 0.009$ in $\delta_4 = 0.017$ in

Load Case 2

 $\delta_1 = 0.008$ in $\delta_2 = 0.016$ in $\delta_3 = 0.007$ in $\delta_4 = 0.016$ in

Page A8.2 Theorem of Least Work

Figure A8.2

The x, y and z dimensions are measured as shown in this sketch:

The moment equation in the right column is actually written as:

 $M = (500 + R_x) (L / 2 + y) - 1,000 y$

but it simplifies to the Bruhn equation shown.

Thanks to Jim Baldwin.

Page A8.3 Method of Least Work – Fixed Beam

Column 1,							
For M	0 < y < 21	-					
M _r	should be M _R						
Then							
PL	should be	ΡL					
Last eq	uation						
2 P _L	should be	2 P L					
PL	should be	ΡL					

Membe	Length, r L (inch)	Area, A (in ²)	Load, S (Ib)	Unit Load, u	S u L / A	u ² L / A	True Load S + X u (lb)
AB	30.00	1.0	0	-0.7071	0	15.00	395.3
BC	30.00	1.0	-1,000	-0.7071	21,213.2	15.00	-604.7
CD	30.00	1.0	0	-0.7071	0	15.00	395.3
DA	30.00	1.0	0	-0.7071	0	15.00	395.3
AC	42.426	2.0	0	1.000	0	21.21	-559.0
BD	42.426	1.5	1,414.2	1.000	40,000	28.28	855.2
				Σ	61,213.2	109.50	

Unit Loads

$$X = -\frac{S u L / A}{u^2 L / A} = -\frac{(61,213.2)}{109.50} = -559.0 \ lb$$

True Loads

$$P_{AB} = S + X u_{x} = 0 \text{ lb} - 559.0 (-0.7071) = 395.3$$

$$P_{BC} = S + X u_{x} = -1,000 \text{ lb} - 559.0 (-0.7071) = -604.7$$

$$P_{CD} = S + X u_{x} = 0 \text{ lb} - 559.0 (-0.7071) = 395.3$$

$$P_{BD} = S + X u_{x} = 0 \text{ lb} - 559.0 (-0.7071) = 395.3$$

$$P_{CE} = S + X u_{x} = 0 \text{ lb} - 559.0 (1.00) = 559.0$$

$$P_{CE} = S + X u_{x} = 1,414.2 \text{ lb} - 559.0 (1.00) = 855.2$$

Degree of Redundancy

n = m - (2p-3)

m 6 Members

p 4 Pinned Joints

n n = m - (2 p - 3) = 6 - [2(4) - 3] = 1

Spreadsheet

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures page A8.7

1.38

Page A8.8 Method of Dummy Unit Loads, Singly Redundant Truss

Column 1, second table u = 1.224 should be 1.225 or 1.2247

Member	Length, L (in)	Area, A (in^2)	Load, S (lb)	Unit Load, u _x	S u _x L / A	u _x ²L/A	True Load S + X u (lb)
AO BO CO	141.42 100 200	0.20 0.20 0.40	0 1,000 0	1.2247 -1.3660 1	0 -6.8E+05 0	1,060.7 933.0 500.0	335.5 625.8 273.9
				Σ =	-6.8E+05	2,493.67	

Dummy Unit Load Method – Unequal Areas

$$1.22474 (0.7071) + BO + 1 (0.500) = 0 BO = -1.36603$$

Member Forces

Member	Length L (inch)	Area A (in ²)	Load S (lb)	Unit Load u	Su _x L/A	u _x ²L/A	True Load S + X u (lb)
AO	141.421	0.200	0	1.22474	0	1,060.66	335.5
BO	100	0.200	1,000	-1.36603	-683,012.70	933.01	625.8
CO	200	0.400	0	1	0	500	273.9
				Σ	-683,012.70	2,493.67	

$$X = -\frac{S u L / A}{u^2 L / A} = -\frac{(-683,012.70)}{2,493.67} = 273.9 \ lb$$

$$R_1 = S + X u = 0 + 273.9 \ (1.2247) = 335.5 \ lb$$

$$R_2 = S + X u = 1,000 + 273.9 \ (-1.3360) = 625.8 \ lb$$

$$R_3 = S + X u = 0 + 273.9 \ (1) = 273.9 \ lb$$

Displacements

Vertical Displacements

$$\delta_y = \frac{S \, u \, L \, / \, A}{E} = \frac{(-683,012.70)}{10.0E06 \, psi} = -0.0683 \, inch$$

Horizontal Displacements

$\Sigma F_{x} = 0$	- AO sin α + CO sin β + 1 = 0	
	-AO(0.7071) + 0 + 1 = 0	AO = 1.4142
$\Sigma F_y = 0$	AO $\cos \alpha$ + BO + CO $\cos \beta$ = 0	
	1.4142(0.7071) + BO + 0(0.500) = 0	BO = -1.000

Member	Length, L (inch)	Area, A (in ²)	Load, S * (lb)	Unit Load, u	S u L / A
AO BO CO	141.42 100 200	0.20 0.20 0.40	335.5 625.8 273.9	1.4142 -1.000 0	335,456 -312,924 0
* True loads f	from exampl	Σ =	22,531.5		

$$\delta_x = \frac{S \, u \, L \, / \, A}{E} = \frac{22,531.5}{10.0E06 \, psi} = 0.0023 \, inch$$

Horizontal Displacements - Another Way

$\Sigma F_{x} = 0$	- AO sin α + CO sin β + 1 = 0	
	0 + CO(0.86603) + 1 = 0	CO = -1.1547

$\Sigma F_y = 0$	AO cos	δα +	BO +	CO	$\cos \beta = 0$

0 (0.7071) +	BO - 1.15	647 (0.500) = 0	BO = 0.5774
--------------	-----------	-----------------	-------------

Member	Length, L (inch)	Area, A (in ²)	Load, S * (lb)	Unit Load, u	S u L / A
AO BO CO	141.42 100 200	0.20 0.20 0.40	335.5 625.8 273.9	0 0.5774 -1.1547	0 180,667 -158,135
* True loads from example above.				Σ =	22,531.5

$$\delta_x = \frac{S \, u \, L \, / \, A}{E} = \frac{22,531.5}{10.0E06 \, psi} = 0.0023 \, inch$$

Spreadsheet Page 1

Degree of Redundancy

Member Forces

Member	Length, L (inch)	Area, A (in ²)	Load, S (Ib)	Unit Load, u	S u L / A	u ² L / A	True Load S + X u (lb)
AO BO CO	141.421 100 200	0.20 0.20 0.40	0 1,000 0	1.225 -1.366 1	0 -683,013 0	1,060.66 933.01 500.00	335.5 625.8 273.9
				Σ =	-683,013	2,493.67	

$$X = - \frac{-683,013}{2,493.67} = 273.9 \text{ lb}$$

$$\delta_y = \frac{-683,013}{1.00\text{E}+07} = -0.0683 \text{ inch}$$

True Loads

Spreadsheet Page 2

Vertical Displacements в 774 1.225 -1.366 0 β α ο $\Sigma \mathbf{x} = \mathbf{0}$ - AO $\sin \alpha$ со sin β 0 + = 1 (0.86603) (0.70711) + - A0 0 = AO = 1.2247 Σ y = 0 AO cosα + BC + CO <mark>cos</mark> β 0 = 1.225 (0.70711) + во + 1 (0.500) = 0 BO = -1.3660

Member	Length, L (inch)	Area, A (in ²)	Load, S (Ib)	Unit Load, u	S u L / A	u ² L / A	True Load S + X u (lb)
AO BO CO	141.421 100 200	0.20 0.20 0.40	0 1,000 0	1.225 -1.366 1	0 -683,013 0	1,060.66 933.01 500.00	335.5 625.8 273.9
				Σ =	-683,013	2,493.67	

Horizontal Displacements

Σ	у	=	0	A	D	<mark>cos</mark> α	+	BO	+	со	<mark>cos</mark> β	=	0		
				1.4	14	0.70711) +	BO	+	0	0.500	=	0	BO =	-1.000

Member	Length, L (inch)	Area, A (in ²)	Load, S * (Ib)	Unit Load, u	S u L / A
AO BO CO	141.42 100 200	0.20 0.20 0.40	335.5 625.8 273.9	1.4142 -1.000 0	335,456 -312,924 0
* True loads f	from exampl	e above.		Σ =	22,531.5
_		1			
E	1.00E+07			δ _X	0.0023

Page A8.10 Trusses with Double Redundancy

	Member	Length, L (inch)	Area, A (in ²)	Load, S (Ib)	Unit Load, u _x	Unit Load, u _y	S u _x L / A	S u _y L / A	u _x ² L / A	u _y ² L / A	u _x u _y L/A	True Load S + X u (lb)
	AB BC CD BD CE BE ED BF AE EF	30 30 40 50 50 40 30 50 50 30	0.50 0.25 0.50 0.25 0.50 0.70 0.50 0.80 0.50 0.70	750 0 -1,000 1,250 0 -3,000 -750 0 3,750 -3,000	-0.600 0 0 0 -0.800 0 1.000 1.000 -0.600	0 -0.600 -0.800 1 -0.800 -0.600 0 0 0	-27,000 0 0 137,143 0 375,000 77,143	0 0 64,000 250,000 0 137,143 27,000 0 0 0	21.60 0 0 36.57 0 62.50 100 15.43	0 43.20 51.20 200 100 36.57 21.60 0 0	0 0 0 36.57 0 0 0 0	1,686.4 558.2 -255.7 319.6 -930.4 -1,007.2 -191.8 -1,560.6 2,189.4 -2,063.6
-	AF	40	0.25	U	-0.800	0 Σ	0 562,286	0 478,143	338.50	452.57	0 36.57	1,248.5

S Loads Expanded


```
Unit X Loads
```

Joint B

$\Sigma F_x = 0$ $\Sigma F_y = 0$	$-AB - BF \cos \alpha = 0$ $-BE - BF \sin \alpha = 0$	- AB - 1 lb (0.60) = 0 - BE - 1 lb (0.80) = 0	AB = - 0.60 lb CD = - 0.80 lb
Joint A			
$\Sigma F_{x} = 0$ $\Sigma F_{y} = 0$	AB - AE $\cos \alpha = 0$ - AF - AE $\sin \alpha = 0$	0.60 lb - AE (0.60) = 0 - AF - 1.00 (0.80) = 0	AE = 1.00 lb AF = -0.80 lb
Joint F			
$\Sigma F_x = 0$	$EF + BF \cos \alpha = 0$	EF + 1 lb (0.60) = 0	EF = - 0.60 lb
Unit Y Loads			
Joint C			
$\Sigma F_x = 0$	-BC - CE $\cos \alpha = 0$	- AB - 1 lb (0.60) = 0	BC = -0.60 lb
$\Sigma F_y = 0$	- CD - CE sin α = 0	- CD - 1 lb (0.80) = 0	CD = -0.80 lb
Joint D			
$\Sigma F_y = 0$	- CD - BD sin α = 0	-(-0.80) - BD (0.80) = 0	BD = 1.00 lb
$\Sigma F_x = 0$	- DE - BD $\cos \alpha = 0$	- DE - 1 lb (0.60) = 0	DE = - 0.60 lb

Unit Loads

Two Equations, Two Unknowns

$$X \sum \frac{u_x^2 L}{A} + Y \sum \frac{u_x u_y L}{A} = -\sum \frac{S u_x L}{A} \qquad 338.5 \times + 36.6 \times = -562,285.7$$

$$X \sum \frac{u_x u_y L}{A} + Y \sum \frac{u_y^2 L}{A} = -\sum \frac{S u_y L}{A} \qquad 36.6 \times + 452.6 \times = -478,142.9$$

$$\begin{bmatrix} 338.5 & 36.6 \\ 36.6 & 452.6 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -562,285.7 \\ -478,142.9 \end{bmatrix}$$

$$\begin{bmatrix} 338.5 & 36.6 \\ 36.6 & 452.6 \end{bmatrix}^{-1} = \begin{bmatrix} 0.00298 & -0.00024 \\ -0.00024 & 0.00223 \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 0.00298 & -0.00024 \\ -0.00024 & 0.00223 \end{bmatrix} \begin{bmatrix} -562,285.7 \\ -478,142.9 \end{bmatrix} = \begin{bmatrix} -1,560.59 \\ -930.39 \end{bmatrix}$$

$$X = -1,560.6 \times = -930.4$$

True Loads

$$\begin{array}{l} {\sf P}_{AB} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 750 \, lb \, - \, 1,560.6 \, (\, -0.600 \,) \, - \, 930.4 \, (\, 0 \,) \, = \, 1,686.4 \\ {\sf P}_{BC} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 0 \, lb \, - \, 1,560.6 \, (\, 0 \,) \, - \, 930.4 \, (\, -0.600 \,) \, = \, 558.2 \\ {\sf P}_{CD} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, -1,000 \, lb \, - \, 1,560.6 \, (\, 0 \,) \, - \, 930.4 \, (\, -0.800 \,) \, = \, -255.7 \\ {\sf P}_{BD} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 1,250 \, lb \, - \, 1,560.6 \, (\, 0 \,) \, - \, 930.4 \, (\, 1 \,) \, = \, 319.6 \\ {\sf P}_{CE} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 0 \, lb \, - \, 1,560.6 \, (\, 0 \,) \, - \, 930.4 \, (\, 1 \,) \, = \, -930.4 \\ {\sf P}_{BE} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 0 \, lb \, - \, 1,560.6 \, (\, -0.800 \,) \, - \, 930.4 \, (\, -0.800 \,) \, = \, -1,007.2 \\ {\sf P}_{ED} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, -3,000 \, lb \, - \, 1,560.6 \, (\, 0 \,) \, - \, 930.4 \, (\, -0.600 \,) \, = \, -191.8 \\ {\sf P}_{BF} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 0 \, lb \, - \, 1,560.6 \, (\, 1 \,) \, - \, 930.4 \, (\, 0 \,) \, = \, -1,560.8 \\ {\sf P}_{AE} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, -3,750 \, lb \, - \, 1,560.6 \, (\, 1 \,) \, - \, 930.4 \, (\, 0 \,) \, = \, 2.189.4 \\ {\sf P}_{EF} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, -3,000 \, lb \, - \, 1,560.6 \, (\, -0.600 \,) \, - \, 930.4 \, (\, 0 \,) \, = \, -2,063.6 \\ {\sf P}_{AF} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 0 \, lb \, - \, 1,560.6 \, (\, -1) \, - \, 930.4 \, (\, 0 \,) \, = \, -2,063.6 \\ {\sf P}_{AF} = S \, + \, X \, u_{x} \, + \, Y \, u_{y} = \, 0 \, lb \, - \, 1,560.6 \, (\, -1) \, - \, 930.4 \, (\, 0 \,) \, = \, 1,248.5 \end{array} \right$$

Solution

Table A8.3

Member	Length, L (inch)	Area, A (in ²)	Load, S (Ib)	Unit Load, u _x	Unit Load, u _y	S u _x L / A	S u _v L / A	u _x ² L / A	u _v ² L / A	u _x u _y L/A	True Load
AO BO CO DO	86.533 72.000 80.498 93.723	0.200 0.100 0.200 0.300	0 2,000 0 0	0.8062 -1.5652 1 0	1.1541 -1.7285 0 1	0 -2,253,957 0 0	0 -2,489,037 0 0	281.23 1,764.00 402.49 0	576.30 2,151.15 0 312.41	402.58 1,947.98 0 0	899.9 465.2 522.6 414.7
					Σ	-2,253,957	-2,489,037	2,447.73	3,039.85	2,350.56	

S Loads

Unit Loads u x

$$\Sigma F_{x} = 0 - AO \sin \alpha + CO \sin \beta + DO \sin \gamma = 0$$

-AO sin (33.69°) + **1** sin (25.57°) + 0 = 0 AO = 0.8062

$\Sigma F_y = 0$	AO cos α + BO + CO cos β + DO cos γ = 0	
	$0.8062 \cos(33.69^\circ) + BO + 1 \cos(25.57^\circ) + 0 = 0$	BO = -1.5652

Unit Loads u_y

$$\Sigma F_{x} = 0 - AO \sin \alpha + CO \sin \beta + DO \sin \gamma = 0$$

-AO sin (33.69°) + 0 + 1 sin (39.81°) = 0 AO = 1.1541

$$\Sigma F_y = 0$$
 AO cos α + BO + CO cos β + DO cos γ = 0
1.1541 cos (33.69°) + BO + 0 + 1 cos (39.81°) = 0 BO = -1.7285

Unit Loads

в

ο

С

///

Y

Х

D ///4

Two Equations, Two Unknowns

$$X \sum \frac{u_x^2 L}{A} + Y \sum \frac{u_x u_y L}{A} = -\sum \frac{S u_x L}{A}$$

2,444.8 X + 2,349.4 Y = 2,252,160

$$X \sum \frac{u_x u_y L}{A} + Y \sum \frac{u_y^2 L}{A} = -\sum \frac{S u_y L}{A}$$

2,349.4 X + 3,041.0 Y = 2,439,760

Matrix Form

 $\begin{bmatrix} 2,444.8 & 2,349.4 \\ 2,349.4 & 3,041.0 \end{bmatrix} \left\{ \begin{array}{c} X \\ Y \end{array} \right\} = \left\{ \begin{array}{c} 2,252,160 \\ 2,439,760 \end{array} \right\}$ $\left\{ \begin{array}{c} X \\ Y \end{array} \right\} = \begin{bmatrix} 0.00159 & -0.00123 \\ -0.00123 & 0.00128 \end{array} \right] \left\{ \begin{array}{c} 2,252,160 \\ 2,439,760 \end{array} \right\} = \left\{ \begin{array}{c} 521.9 \\ 415.5 \end{array} \right\}$ $X = 521.9 \qquad Y = 415.5$

True Loads

$$P_{AO} = S + X u_{x} + Y u_{y} = 0 lb + 521.9 (0.806) + 415.5 (1.154) = 899.9$$

$$P_{BO} = S + X u_{x} + Y u_{y} = 2,000 lb + 521.9 (-1.564) + 415.5 (-1.729) = 465.2$$

$$P_{CO} = S + X u_{x} + Y u_{y} = 0 lb + 521.9 (1.00) + 415.5 (0) = 522.6$$

$$P_{DO} = S + X u_{x} + Y u_{y} = 0 lb + 521.9 (0) + 415.5 (1.00) = 414.7$$

Degree of Redundancy

	Degree of Redundancy	y = 2	Two Equations	Four Members =	Four Unknowns
--	----------------------	-------	---------------	----------------	---------------

Flexibility Coefficients

```
Elmer F. Bruhn
```

Analysis and Design of Flight Vehicles Structures

pages A8.31 and A8.32

Area,

Α

(in²)

0.20

0.10

0.20

0.30

True Load

S + X u

(lb)

899.95

465.19

522.59

414.71

Page A8.15 Example Problem 9

Column 2, Figure A8.24

Add "L = 15 inches"

Thanks to Dr. Howard W. Smith.

Page A8.21 Continuous Truss

Column 2

Loading for column { g $_{i2}$ } of the matrix [g $_{im}$]

should be

Member Flexibility Coefficient

L ₁₋₇ / A ₁₋₇ = 20 / 1.00 = 20

L ₈₋₁₅ / A ₈₋₁₅ = 20 / 0.50 = 40 L ₁₆₋₃₁ / A ₁₆₋₃₁ = 22.361 / 1.00 = 22.361

 $\alpha_i = 1 / E$

1	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	
	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۱.
	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	>
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	6 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	0	L
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	0	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.36	

Matrix [g im]

Figure A8.30b

Missing the "1#" label

Calculations

Bruhn, page A8.22

$$[\alpha_{rs}] = [g_{ri}] [\alpha_{ij}] [g_{js}] = \frac{1}{E} \begin{bmatrix} 135.9 & -7.951 \\ -7.951 & 135.9 \end{bmatrix}$$

$$[\alpha_{rn}] = [g_{ri}] [\alpha_{ij}] [g_{jn}] = \frac{1}{E} \begin{bmatrix} -7.951 & -15 & 0 & 0 \\ 0 & 0 & -15 & -7.951 \end{bmatrix}$$

$$[\alpha_{rs}]^{-1} = E \begin{bmatrix} 0.00738 & 0.00043\\ 0.00043 & 0.00738 \end{bmatrix} = \frac{E}{18,432} \begin{bmatrix} 136.1 & 7.962\\ 7.962 & 136.1 \end{bmatrix}$$

$$\left[\alpha_{rs}\right]^{-1} \left[\alpha_{rn}\right] = E \begin{bmatrix} 0.0074 & 0.004\\ 0.0004 & 0.0074 \end{bmatrix} \times \frac{1}{E} \begin{bmatrix} -7.951 & -15 & 0 & 0\\ 0 & 0 & -15 & -7.951 \end{bmatrix} = \begin{bmatrix} -0.0587 & -0.1108 & -0.0065 & -0.0034\\ -0.0034 & -0.0065 & -0.1108 & -0.0587 \end{bmatrix}$$

$$- \left[\alpha_{rs}\right]^{-1} \left[\alpha_{rn}\right] = \begin{bmatrix} 0.0587 & 0.1108 & 0.0065 & 0.0034 \\ 0.0034 & 0.0065 & 0.1108 & 0.0587 \end{bmatrix}$$

		[9 i	m]			-[α _r	s] ⁻¹ [0	α _{rn}][g ir]					
	□ 1	0	0	0]		0	0	0	0		— 1	0	0	0]
	0.50	-0.50	0	0		0.029	0.055	0.003	0.002		0.529	-0.445	0.003	0.002
	0	0	0	0		0.059	0.111	0.006	0.003		0.059	0.111	0.006	0.003
	0	0	0	0		0.031	0.059	0.059	0.031		0.031	0.059	0.059	0.031
	0	0	0	0		0.003	0.006	0.111	0.059		0.003	0.006	0.111	0.059
	0	0	-0.50	0.50		0.002	0.003	0.055	0.029		0.002	0.003	-0.445	0.529
	0	0	0	1		0	0	0	0		0	0	0	1
	-0.5	0	0	0		0	0	0	0		-0.50	0	0	0
	-0.75	0.25	0	0		-0.015	-0.028	-0.002	-0.001		-0.765	0.222	-0.002	0
	-0.25	0.25	0	0		-0.044	-0.083	-0.005	-0.003		-0.294	0.167	-0.005	-0.003
	0	0	0	0		-0.045	-0.085	-0.033	-0.017		-0.045	-0.085	-0.033	-0.017
	0	0	0	0		-0.017	-0.033	-0.085	-0.045		-0.017	-0.033	-0.085	-0.045
	0	0	0.25	-0.25		-0.003	-0.005	-0.083	-0.044		-0.003	-0.005	0.167	-0.294
	0	0	0.25	-0.75		-0.001	-0.002	-0.028	-0.015		0	-0.002	0.222	-0.765
	0	0	0	-0.50		0	0	0	0		0	0	0	-0.50
[G _{im}] =	1.118	0	0	0	+	0	0	0	0	=	1.118	0	0	0
	-1.118	0	0	0		0	0	0	0		-1.118	0	0	0
	-0.559	-0.559	0	0		0.033	0.062	0.004	0.002		-0.526	-0.497	0.004	0.002
	0.559	0.559	0	0		-0.033	-0.062	-0.004	-0.002		0.526	0.497	-0.004	-0.002
	-0.559	0.559	0	0		0.033	0.062	0.004	0.002		-0.526	0.621	0.004	0.002
	0.559	-0.559	0	0		-0.033	-0.062	-0.004	-0.002		0.526	-0.621	-0.004	-0.002
	0	0	0	0		-0.031	-0.058	0.058	0.031		-0.031	-0.058	0.058	0.031
	0	0	0	0		0.031	0.058	-0.058	-0.031		0.031	0.058	-0.058	-0.031
	0	0	0	0		-0.031	-0.058	0.058	0.031		-0.031	-0.058	0.058	0.031
	0	0	0	0		0.031	0.058	-0.058	-0.031		0.031	0.058	-0.058	-0.031
	0	0	-0.559	0.559		-0.002	-0.004	-0.062	-0.033		-0.002	-0.004	-0.621	0.526
	0	0	0.559	-0.559		0.002	0.004	0.062	0.033		0.002	0.004	0.621	-0.526
	0	0	0.559	0.559		-0.002	-0.004	-0.062	-0.033		-0.002	-0.004	0.497	0.526
	0	0	-0.559	-0.559		0.002	0.004	0.062	0.033		0.002	0.004	-0.497	-0.526
	0	0	0	-1.118		0	0	0	0		0	0	0	-1.118
	0	0	0	1.118		L 0	0	0	0 _		0	0	0	1.118

Example

For $P_1 = P_2 = P_3 = P_4 = 1,000$ lb

Member Forces for Unit Applied External Loads

Elmer F. Bruhn, Analysis and Design of Flight Vehicle Structures, page A8.22.

Check the signs on the member forces with a white background:

	1	0	0	0
	0.529	-0.445	0.003	0.002
	0.059	0.111	0.006	0.003
	0.031	0.059	0.059	0.031
	0.003	0.006	0.111	0.059
	0.002	0.003	-0.445	0.529
	0	0	0	1
	-0.500	0	0	0
	-0.765	0.222	-0.002	0
	-0.294	0.167	-0.005	-0.003
	-0.045	-0.085	-0.033	-0.017
	-0.017	-0.033	-0.085	-0.045
	-0.003	-0.005	0.167	-0.294
	0	-0.002	0.222	-0.765
	0	0	0	-0.500
[G _{im}] =	1.118	0	0	0
	-1.118	0	0	0
	-0.526	-0.497	0.004	0.002
	0.526	0.497	-0.004	-0.002
	-0.526	0.621	0.004	0.002
	0.526	-0.621	-0.004	-0.002
	-0.031	-0.058	0.058	0.031
	0.031	0.058	-0.058	-0.031
	-0.031	-0.058	0.058	0.031
	0.031	0.058	-0.058	-0.031
	-0.002	-0.004	-0.621	0.526
	0.002	0.004	0.621	-0.526
	-0.002	-0.004	0.497	0.526
	0.002	0.004	-0.497	-0.526
	0	0	0	-1.118
	0	0	0	1.118

Figure A8.31

Member	Number	Length L	Area A	L/A
		(in)	(in ²)	(in⁻¹)
AB	1	35.474	0.565	62.79
BC	2	25.420	0.499	50.94
BD	3	9.200	0.165	55.76
CD	4	25.420	0.499	50.94
DE	5	35.474	0.565	62.79
FG	6	35.474	0.565	62.79
GH	7	25.341	0.565	44.85
HI	8	5.000	0.165	30.30
IJ	9	25.341	0.565	44.85
GJ	10	9.200	0.165	55.76
JK	11	35.474	0.565	62.79
AG	12	40.415	0.630	64.15
BG	13	15.000	0.165	90.91
BH	14	27.569	0.500	55.14
HC	15	11.700	0.395	29.62
IC	16	11.700	0.395	29.62
DI	17	27.569	0.500	55.14
DJ	18	15.000	0.165	90.91
EJ	19	40.415	0.630	64.15
AD	20	37.369	0.565	66.14
FJ	21	37.369	0.565	66.14
GI	22	26.233	0.500	52.47
DG	23	17.597	0.165	106.65
BJ	24	17.597	0.165	106.65

Joint Coordinates

Joint	x	у	z
A B C D E	0	25.00	0
	2.90	20.00	35.00
	7.50	20.00	60.00
	12.10	20.00	35.00
	15.00	25.00	0
F G H I J K	0	0	0
	2.90	5.00	35.00
	5.00	8.57	60.00
	10.00	8.57	60.00
	12.10	5.00	35.00
	15.00	0	0

Statics

Page A8.23, Column 2

Joint C

C B	x 7.5 2.9	y 20 20	z 60 35	C D	x 7.5 12.1	y 20 20	z 60 35
BC # 2	i -4.6	j O	k -25	CD # 4	i 4.6	j O	k -25
	25.41968	in			25.41968	in	
cos	α -0.180962 100.426°	β Ο 90°	γ -0.98349 169.574°	cos	α 0.180962 79.57419°	β 0 90°	γ -0.9834901 169.5742°
C H	x 7.5 5	y 20 8.57	z 60 60	C I	x 7.5 10	y 20 8.57	z 60 60
HC # 15	i -2.5	j -11.43	k O	IC # 16	i 2.5	j -11.43	k O
	11.70021	in			11.70021	in	
cos	α -0.213671 102.338°	β -0.976906 167.662°	γ 0 90°	cos	α 0.213671 77.66241°	β -0.976906 167.6624°	γ 0 90°

 $\Sigma F x = 0 \qquad \qquad 0.21367 \ q_{16} - 0.21367 \ q_{15} + 0.180962 \ q_4 - 0.180962 \ q_2 + P_2 = 0$

 $0.21367 q_{16} - 0.21367 q_{15} + 0.18096 q_4 - 0.18096 q_2 = - P_2$

 $\Sigma Fy = 0 \qquad - 0.97691 q_{15} - 0.97691 q_{16} + P_1 = 0$ $0.97691 q_{15} + 0.97691 q_{16} = - P_1$ $q_{15} + q_{16} = - 1.02364 P_1$

$$\Sigma Fz = 0$$
 - 0.98349 q₂ - 0.98349 q₄ = 0

B A	x 2.9 0	y 20 25	z 35 0		B C	x 2.9 7.5	y 20 20	z 35 60
AB # 1	i -2.9	j 5	k -35		BC # 2	i 4.6	j O	k 25
	35.47408	in				25.41968	in	
cos	α -0.08175 94.6892°	β 0.140948 81.8973°	γ -0.986636 170.622°		cos	α 0.180962 79.57419°	β 0 90°	γ 0.9834901 10.42581°
B D	x 2.9 12.1	y 20 20	z 35 35		B G	x 2.9 2.9	y 20 5	z 35 35
BD # 3	i 9.2	j O	k O		BG # 13	i O	j -15	k O
	9.2	in				15	in	
cos	α 1 0°	β 0 90°	γ 0 90°		cos	α 0 90°	β -1 180°	γ 0 90°
B H	x 2.9 5	y 20 8.57	z 35 60		B J	x 2.9 12.1	y 20 5	z 35 35
BH # 14	i 2.1	j -11.43	k 25		BJ # 24	i 9.2	j -15	k O
	27.56909	in				17.59659	in	
cos	α 0.076172 85.6314°	β -0.414595 114.494°	γ 0.906813 24.9315°		cos	α 0.522829 58.47782°	β -0.852438 148.4778°	γ 0 90°
ΣFx =	0	- 0.08175	q ₁ + 0.1809	6 q ₂ + q ₃ +	0 q ₁₃ +	0.07617 q ₁₄	+ 0.52283	q ₂₄ = 0

Joint B

 $0.08175 q_1 - 0.18096 q_2 - q_3 - 0.07617 q_{14} = 0.52283 q_{24}$

 $\Sigma Fy = 0 \qquad 0.14095 q_1 + 0 q_2 + 0 q_3 - q_{13} - 0.41460 q_{14} - 0.85244 q_{24} = 0$ - 0.14095 q_1 + q_{13} + 0.41460 q_{14} = - 0.85244 q_{24}

$$\Sigma Fz = 0 \qquad - 0.98664 q_1 + 0.98349 q_2 + 0 q_3 + 0 q_{13} + 0.90681 q_{14} + 0 q_{24} = 0$$

$$0.98664 q_1 - 0.98349 q_2 - 0.90681 q_{14} = 0$$

$$q_1 - 0.99681 q_2 - 0.91910 q_{14} = 0 \qquad \text{and so on } \dots$$

Joints P_1 P_2 P_3 q 2 q 4 q 15 q 16 С 1 $\Sigma F x = 0$ -0.18096 0.18096 -0.21367 0.21367 -1 $\Sigma Fy = 0$ 0 0 -0.97691 -0.97691 1 2 $\Sigma Fy = 0$ 0 -1.02364 0 1 1 3 $\Sigma Fz = 0$ -0.98349 -0.98349 0 0 q 7 q 8 q 14 q 15 н 4 $\Sigma F x = 0$ -0.08287 1 -0.07617 0.21367 $\Sigma Fy = 0$ 5 -0.14088 0 0.41459 0.97691 -0.98655 ΣFz = 0 -0.9068126 0 6 0 q 8 q 9 q 16 q 17 q 22 P_1 P_2 P_3 7 $\Sigma F x = 0$ 0.08287 -0.21367 0.07617 -0.27065 -1 L -1 8 $\Sigma Fy = 0$ 0 -0.14088 0.97691 0.41459 -0.13609 $\Sigma Fz = 0$ -0.98655 0.00000 -0.90681 -0.95301 9 0 q2 q13 q14 q1 q3 q24 в $\Sigma F x = 0$ -0.08175 0.18096 0.07617 0.52283 10 1 0 $\Sigma Fy = 0$ -0.41459 -0.85244 0.14095 0 0 11 -1 $\Sigma Fz = 0$ -0.98664 0.98349 0 0 0.90681 0 $\Sigma Fz = 0$ -0.996811 -0.919095 0 12 1 q3 q4 q5 q17 q18 q20 D $\Sigma F x = 0$ -0.18096 0.08175 -0.07617 -0.32380 13 -1 0 $\Sigma Fy = 0$ 0 0.14095 -0.41459 0.13380 14 0 -1 $\Sigma Fz = 0$ -0.93662 15 0 0.98349 -0.98664 0.90681 0 q10 q13 a6 q7 q12 a22 a23 G $\Sigma F x = 0$ -0.08175 0.08287 -0.07175 0.27065 0.52283 16 1 0 $\Sigma Fy = 0$ 0.14088 0.49486 0.13609 0.85244 17 -0.14095 0 1 18 $\Sigma Fz = 0$ -0.98664 0.98655 0 -0.86601 0 0.95301 0 q19 q10 q11 q18 q21 q24 q9 J 19 $\Sigma F x = 0$ -0.08287 -1 0.08175 0 0.071755 -0.3238015 -0.52283 $\Sigma Fy = 0$ 20 0.14088 0 -0.14095 1 0.49486 -0.1338023 0.85244 ΣFz = 0 -0.866005 -0.936616 21 0.98655 -0.98664 0 0 0 q22 q23 q24 q22 q23 q24 22 GI q22 = q22 1 1 23 DG q23 = q23 1 1 ł 24 q24 = q24 1 ΒJ 1

Matrix [C _{ij}]

0	0.181	0	0.181	0	0	0	0	0	0	0	0	0	0	0.214	-0.214	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0.983	0	-0.983	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0.083	1	0	0	0	0	0	0.076	0.214	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0.141	0	0	0	0	0	0	-0.415	0.977	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0.987	0	0	0	0	0	0	0.907	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	-1	0.083	0	0	0	0	0	0	-0.214	-0.076	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	-0.141	0	0	0	0	0	0	0.977	-0.415	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	-0.987	0	0	0	0	0	0	0	0.907	0	0	0	0	0	0	0
0.082	0.181	1	0	0	0	0	0	0	0	0	0	0	0.076	0	0	0	0	0	0	0	0	0	0
-0.141	0	0	0	0	0	0	0	0	0	0	0	-1	-0.415	0	0	0	0	0	0	0	0	0	0
1	0.997	0	0	0	0	0	0	0	0	0	0	0	0.919	0	0	0	0	0	0	0	0	0	0
0	0	1	0.181	0.082	0	0	0	0	0	0	0	0	0	0	0	-0.076	0	0	0.324	0	0	0	0
0	0	0	0	0.141	0	0	0	0	0	0	0	0	0	0	0	-0.415	-1	0	-0.134	0	0	0	0
0	0	0	-0.983	-0.987	0	0	0	0	0	0	0	0	0	0	0	0.907	0	0	0.937	0	0	0	0
0	0	0	0	0	0.082	0.083	0	0	1	0.072	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.141	0.141	0	0	0	-0.495	-1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.987	0.987	0	0	0	0.866	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0.083	1	0.082	0	0	0	0	0	0	0	-0.072	0	0.324	0	0	0
0	0	0	0	0	0	0	0	-0.141	0	-0.141	0	0	0	0	0	0	-1	-0.495	0	0.134	0	0	0
0	0	0	0	0	0	0	0	-0.987	0	-0.987	0	0	0	0	0	0	0	0.866	0	0.937	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
																							_

Inverse of [C $_{ij}$] Matrix

	-2.754	-0.825	-0.507	-1.107	1.6892	-0.148	-1.107	-2E-16	-0.093	5E-16	0	1	-5E-16	1E-48	-7E-17	0	0	0	0	8E-17	0	0	0	0
	2.763	2E-16	0.5084	-2.763	0	0.2321	-2.763	-6E-16	-0.232	-5E-16	0	0	5E-16	-1E-48	1E-16	0	0	0	0	2E-16	0	0	0	0
	-0.275	-9E-04	-0.051	0.2705	0.0019	-0.023	0.2705	6E-17	0.0227	1	0	-0.082	-4E-17	1E-49	-1E-17	0	0	0	0	-2E-17	0	0	0	0
	2.763	2E-16	-0.508	-2.763	0	0.2321	-2.763	-6E-16	-0.232	-5E-16	0	0	5E-16	-1E-48	1E-16	0	0	0	0	2E-16	0	0	0	0
	-2.754	0.8295	0.746	-1.107	-0.005	0.0937	-1.107	-1.694	0.1488	-2.365	0	0.1933	2.3649	-7E-33	-0.818	0	0	0	0	8E-17	0	0	0	0
	-0.483	1.2344	0.089	2.4475	-1.693	-0.98	2.4475	-0.834	-0.567	0	0	0	0	-1.245	-0.178	2.0758	0	0.8416	-2.076	1.2455	0.5397	0	0	0
	3E-16	-0.825	-3E-17	-3.862	1.6894	1.0968	-3.862	-8E-16	-0.324	0	0	0	0	0	7E-17	0	0	0	0	3E-16	0	0	0	0
	4E-17	-0.107	-4E-18	0.5	0	-0.042	-0.5	-1E-16	-0.042	0	0	0	0	0	9E-18	0	0	0	0	3E-17	0	0	0	0
	3E-16	0.8252	-3E-17	-3.862	0	0.3244	-3.862	-1.689	-1.097	0	0	0	0	0	7E-17	0	0	0	0	3E-16	0	0	0	0
	-3E-19	0.0009	4E-20	0.0044	-0.002	-0.001	0.0044	8E-19	0.0004	0	0	0	0	0	-8E-20	1	0	-0.083	0	-3E-19	0	0	0	0
(0.5508	-0.466	-0.101	1.611	0.0045	-0.133	1.611	0.9502	1.0158	0	0	0	0	1.419	0.2027	-2.365	0	0.196	2.3649	-1.419	-0.615	0	0	0
	-0.341	0.2885	0.0627	-0.996	-0.003	0.0824	-0.996	-0.588	-0.628	0	0	0	0	-0.878	-0.125	1.4629	-1	0.0216	-1.463	0.8777	0.3804	0	0	0
(0.3882	-0.256	0.0714	-1.586	0.5239	0.0584	-1.586	-3E-16	-0.133	0	-1	-0.141	0	0	3E-17	0	0	0	0	1E-16	0	0	0	0
	-3E-16	0.8977	4E-17	4.2015	-1.838	-0.09	4.2015	8E-16	0.3529	0	0	0	0	0	-7E-17	0	0	0	0	-3E-16	0	0	0	0
	-2E-16	0.5	2E-17	2.34	0	-0.197	2.34	5E-16	0.1966	0	0	0	0	0	-4E-17	0	0	0	0	-2E-16	0	0	0	0
	2E-16	0.5	-2E-17	-2.34	0	0.1966	-2.34	-5E-16	-0.197	0	0	0	0	0	4E-17	0	0	0	0	2E-16	0	0	0	0
	3E-16	0.8977	-4E-17	-4.202	0	0.3529	-4.202	-1.838	-0.09	0	0	0	0	0	7E-17	0	0	0	0	3E-16	0	0	0	0
	-0.388	-0.256	0.0714	1.5858	0	-0.133	1.5858	0.5239	0.0584	0	0	0	0	-1	-0.143	0	0	0	0	-1E-16	0	0	0	0
(0.6276	0.4138	-0.115	-2.564	0	0.2154	-2.564	-0.847	-0.095	0	0	0	0	1.6166	0.2309	0	0	0	0	-1.617	0.2309	0	0	0
	-1E-16	0.0046	0.252	1E-16	-0.005	0.0007	1E-16	-0.005	0.0007	-2.491	0	0.2037	2.4912	-8E-33	0.2064	0	0	0	0	0	0	0	0	0
	-5E-34	-0.005	0	2E-17	0.0047	0.0022	2E-17	0.0047	0.0022	0	0	0	0	0	0	-2.491	0	0.2064	2.4912	0	0.2064	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Unit Stress Distribution– Determinate Structure [g_{im} | g_{ir}]

	[P1	P2	P3	q22	q23	q24]				page	A8.24		
								E	kternal Loa	id	Red	undant Lo	ad
Γ	- 0	-1	0	0	0	0 —		-0.845	2.75	1.11	-0.39	0	0
	1.024	0	0	0	0	0		0	-2.76	2.76	-0.97	0	0
	0	0	0	0	0	0		-0.001	0.27	-0.27	0.09	0	0.523
	0	0	0	0	0	0		0	-2.76	2.76	-0.97	0	0
	0	0	0	0	0	0		0.849	2.75	1.11	-0.39	0	-1.236
	0	0	0	0	0	0		1.264	0.48	-2.45	1.37	-1.085	-2.147
	0	0	-1	0.271	0	0		-0.845	-3E-16	3.862	-1.354	0	-2E-16
	0	0	0	0.136	0	0		-0.109	-4E-17	0.5	-0.175	0	-3E-17
	0	0	0	0.953	0	0		0.845	-3E-16	3.862	-2.320	0	-2E-16
	0	0	0	0	0	0.523		0.001	3E-19	-0.004	0.193	-0.523	3E-19
	0	0	0	0	0	-0.852		-0.477	-0.551	-1.611	1.080	1.236	2.446
	0	0	0	0	0	0		0.295	0.341	0.996	-0.668	0.088	-1.513
	0	0	0	0	0	0	=	-0.262	-0.388	1.586	-0.556	0	0.852
	0	0	0	0	0	0		0.919	3E-16	-4.202	1.474	0	3E-16
	0	0	0	0	0	0		0.512	2E-16	-2.340	0.821	0	1E-16
	0	0	0	0.271	-0.523	0		0.512	-2E-16	2.340	-0.821	0	-1E-16
	0	0	0	0.136	-0.852	0		0.919	-3E-16	4.202	-1.474	0	-3E-16
	0	0	0	0.953	0	0		-0.262	0.388	-1.586	0.556	0	9E-17
	0	0	0	0	0	0.523		0.424	-0.628	2.564	-0.899	0	1.378
	0	0	0	0	0	-0.852		0	0.000	0.000	0.000	0	-1.302
	0	0	0	0	0	0		0	5E-34	0.000	-0.475	1.302	1.302
	0	0	0	1	0	0		0	0	0	1	0	0
	0	0	0	0	1	0		0	0	0	0	1	0
	0	0	0	0	0	1		0	0	0	0	0	1
L													

and so on ...

Х

1.63

Page A8.25 Idealized Box Beam

Flexibility Coefficients

For $E = 10 E$	6 psi	G =	= 3.85 E6 p	Si				
			Length	Area	Thickness	α _{ii}	α ₁₁	Upr & Lwr Skin
Panel	h ₁	h ₂	L	s	t	S/Gt	$(h_1 / h_2)^2 a_{ii}$	2 α _{jj}
	(in)	(in)	(in)	(in ²)	(in)			
Bay 1 Skin	25	30	20	550 in ²	0.032	44,643 / E	31,002 / E	62,004 / E
Bay 2 Skin	20	25	20	450 in ²	0.025	46,753 / E	29,922 / E	59,844 / E
Bay 3 Skin	15	20	20	350 in ²	0.020	45,455 / E	25,568 / E	51,136 / E
Bay 1 Spar Web	7.5	10.0	20	175 in ²	0.065	6,993 / E	3,934 / E	
Bay 2 Spar Web	5.0	7.5	20	125 in ²	0.050	6,494 / E	2,886 / E	
Bay 3 Spar Web	2.5	5.0	20	75 in ²	0.040	4,870 / E	1,218 / E	

Matrix

α	i	i	=	1	1	Е
---	---	---	---	---	---	---

	$\alpha_{ij} =$	I/E													
Γ	1,218	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -
	0	51,136	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1,218	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	134.5	0	0	0	0	24.64	0	0	0	0	0	0
	0	0	0	0	134.5	0	0	0	0	24.64	0	0	0	0	0
	0	0	0	0	0	2,886	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	59,844	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	2,886	0	0	0	0	0	0	0
	0	0	0	24.64	0	0	0	0	80.7	0	0	0	0	14.69	0
	0	0	0	0	24.64	0	0	0	0	80.7	0	0	0	0	14.69
	0	0	0	0	0	0	0	0	0	0	3,934	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	62,004	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	3,934	0	0
	0	0	0	0	0	0	0	0	14.69	0	0	0	0	27.62	0
	0	0	0	0	0	0	0	0	0	14.69	0	0	0	0	27.62

Tapered Bar

L = 60 inches $A_i = 0.120 \text{ in}^2$ $A_j = 0.330 \text{ in}^2$ $A_i / A_j = 0.364$ $\phi_{ii} = 0.7310$ $\phi_{ij} = 0.5569$ $\phi_{jj} = 0.4558$ $\alpha_{ii} = [L / (3A_iE)] \phi_{ii} = 121.84 / E$ $\alpha_{ij} = [L / (6A_iE)] \phi_{ij} = 46.41 / E$ $\alpha_{jj} = [L / (3A_jE)] \phi_{jj} = 27.62 / E$ $\alpha_{jj} = 27.62 / E$

See Bruhn page A7.23

My Results (Bruhn, page A8.26)

$$[\alpha_{rs}] = [g_{ri}] [\alpha_{ij}] [g_{js}] [g_{js}] = [g_{ir}]$$

	0.3873	0.1935	0.0513	
$[\alpha_{rs}]$ = 1,000,000 / E	0.1935	0.2895	0.0722	
	0.0513	0.0722	0.1254	

 $[\alpha_{rn}] = [g_{ri}] [\alpha_{ij}] [g_{jn}] [g_{jn}] = [g_{im}]$

			-0.0348	0.0349	-0.0031	0.0100	-0.0016	0.0016
$[\alpha_{rn}] =$	1,000,000	/ E	-0.0251	0.0248	-0.0052	0.0126	-0.0022	0.0022
			-0.0081	0.0081	-0.0039	0.0048	-0.0023	0.0023

$[\alpha_{rs}]^{-1} = E / 1,000,000 -2.5649 -2.2472 -0.1097 -2.2472 9.3106$

$$[G_{sn}] = -[\alpha_{rs}]^{-1} [\alpha_{rn}]$$

$$[G_{sn}] = \begin{bmatrix} 0.0697 & -0.0708 & -0.0017 & -0.0060 & 0.0002 \\ 0.0364 & -0.0345 & 0.0130 & -0.0358 & 0.0036 \\ 0.0153 & -0.0159 & 0.0240 & -0.0148 & 0.0160 \end{bmatrix}$$

-0.00017 -0.0036

-0.0160

True Stresses

[G _{im}] = [9	9 im] -	[g _{ir}] [G _{rm}]	[G _{rm}]	= [G _{sn}]		
		1	2	3	4	5	6
	1	0.3303	0.0708	0.0017	0.0060	-0.0002	0.0002
	2	0.0697	-0.0708	-0.0017	-0.0060	0.0002	-0.0002
	3	0.0697	0.3292	-0.0017	-0.0060	0.0002	-0.0002
	4	2.260	1.773	0.0433	0.1497	-0.0044	0.0044
	5	1.746	2.233	-0.0433	-0.1497	0.0044	-0.0044
	6	0.0854	0.0124	0.1864	0.0340	-0.0035	0.0035
	7	0.0364	-0.0345	0.0130	-0.0358	0.0036	-0.0036
[G _{im}] =	8	0.0146	-0.0124	0.0136	0.1660	0.0035	-0.0035
	9	2.817	2.492	-0.346	1.178	-0.109	0.109
	10	2.524	2.849	0.346	1.493	0.109	-0.109
	11	0.0459	-0.0006	0.0672	0.0070	0.1180	0.0153
	12	0.0153	-0.0159	0.0240	-0.0148	0.0160	-0.0160
	13	-0.0015	0.0451	0.0217	-0.0070	0.0153	0.1180
	14	3.473	2.749	2.934	1.530	1.397	0.606
	15	2.758	3.482	1.072	2.476	0.606	1.397

D

Ш

4'

; 0.10 in²

2

0.20 in²

Page A8.32 Influence Coefficient Matrix – Redundant Truss

Influence Coefficients

$$\left[\alpha_{ij}\right] = \frac{1}{E} \begin{bmatrix} 432 & 0 & 0 & 0\\ 0 & 720 & 0 & 0\\ 0 & 0 & 402 & 0\\ 0 & 0 & 0 & 312 \end{bmatrix}$$

Using my values for L / A from Problem 3 on page A&

$$\left[\alpha_{ij}\right] = \begin{bmatrix} 432.67 & 0 & 0 & 0\\ 0 & 720 & 0 & 0\\ 0 & 0 & 402.49 & 0\\ 0 & 0 & 0 & 312.41 \end{bmatrix}$$

Unit Load Distribution

$$[g_{ir}] = \begin{bmatrix} 0.8062 & 1.1541 \\ -1.5652 & -1.7285 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

E 2 000 lb

3'

0.20 in

2'

•

////

0.30 in²

U

4

6'

Member	Length,	Area,	True Load
	L	A	S + X u
	(in)	(in ²)	(lb)
ae	86.53	0.20	900.16
be	72.00	0.10	465.31
ce	80.50	0.20	521.91
de	93.72	0.30	415.51

Transpose

$$[g_{ri}] = \begin{bmatrix} 0.8062 & -1.5652 & 1 & 0 \\ 1.1541 & -1.7285 & 0 & 1 \end{bmatrix}$$

Multiply

$$[\alpha_{ij}] \{g_{ri}\} = 1 / E \begin{cases} 348.83 & -1,126.98 & 402.49 & 0 \\ 499.34 & -1,244.52 & 0 & 312.41 \end{cases}$$

Determinate Stress Distribution

$$[g_{41}] = 0.280$$
 should be $[g_{41}] = 0.208$

or 0.207 depending on significant digits of [g ir] ... etc.

$$\begin{bmatrix} g_{im} \end{bmatrix}_{TRUE} = \begin{cases} 0.450\\ 0.232\\ 0.260\\ 0.280 \end{bmatrix} \text{ should be } \begin{bmatrix} g_{im} \end{bmatrix}_{TRUE} = \begin{cases} 0.450\\ 0.233\\ 0.261\\ 0.207 \end{cases}$$

Dividing the forces from Example Problem 3 on page A8.11 by 2,000 yields the distribution above. Using a percentage will give you the same distribution.

Redundant Forces

Note:

$$\left[\alpha_{rn}\right]_{CUT} = \left[g_{ri}\right] \left[\alpha_{ij}\right] \left\{g_{jn}\right\}_{CUT} = \left\{\begin{array}{c} -1126\\ -1245 \end{array}\right\} \frac{1}{EI}$$

should be ...

$$\left[\alpha_{rn}\right]_{CUT} = \left[g_{ri}\right] \left[\alpha_{ij}\right] \left\{g_{jn}\right\}_{CUT} = \left\{\begin{array}{c} -1126\\ -1245 \end{array}\right\} \frac{1}{E}$$

Page A9.13 Calculation of Frame Elastic Properties

Table A9.5, Column 3

w = ds should be
$$W = \frac{ds}{l}$$

Thanks to Dr. Howard W. Smith.

Page A11.9 Moment Distribution Method – Fixed Beam with Support Deflections

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures page A11.9

Column 1, Figure A11.18

The "d" dimension is missing an arrow.

 d
 and
 L
 should be
 d / 2
 L / 2

 2
 2
 2

Below Figure A11.18, to avoid any possible confusion

$$-\delta = \frac{ML}{4EI} \cdot \frac{L}{6} \frac{-ML}{4EI} \cdot \frac{5}{6} L$$

should look something like this:

$$-\delta = \left[\frac{ML}{4EI} \cdot \left(\frac{L}{6}\right)\right] - \left[\frac{ML}{4EI} \cdot \left(\frac{5}{6}\right)L\right] = -\frac{4ML^2}{24EI}$$

where the area of each moment curve $A = \frac{1}{2} \left(\frac{L}{2} \right) \frac{M}{EI} = \frac{M L}{4 E I}$

Page A11.9 Moment Distribution Method – Continuous Beam with Deflected Supports

Column 2, "The fixed-end moments for a trapezoidal loading from Table A11.4 ..."

Table A11.4should beTable A11.1 (page A11.3)

Page A11.13 Fuselage Side Truss


```
Example Problem #8, Table A11.2
```

Second instance of member "CD" in Column 1 should be "CE".

Upper tubes are longer than the lower tubes yet AB and FG are both 34.50 inches long. Using DF = 30.50 inches (instead of 30 inches) and EG = 38.50 inches (instead of 38 inches) I get the following lengths:

ED = 35.42 inch instead of 35.40 inch	DG = 46.05 inch instead of 46.00 inch
BC = 39.51 inch instead of 39.50 inch	FI = 48.44 inch instead of 48.50 inch
CE = 40.92 inch instead of 41.00 inch	

Moments (in-lb)

M _{ab} = -1,614.5	M _{ed} = -111.7	M _{ac} = -785.3	M _{fd} = 206.3
M _{ba} = -1,863.1	M _{eg} = -201.2	M _{ca} = -51.3	M _{dg} = 452.7
M _{bc} = -652.5	M _{ge} = -117.4	M _{be} = -684.2	M _{gd} = 192.0
M _{cb} = -159.9	M _{fg} = -67.0	M _{eb} = 397.5	M _{fi} = -47.8
M _{cd} = -212.7	M _{gf} = -51.3	M _{ce} = -1.5	M _{if} = -13.7
M _{dc} = 1,098.3	M _{gi} = -22.1	M _{ec} = -100.2	M _{hf} = -25.4
M _{de} = 207.3	M _{ig} = -6.3	M _{df} = 641.7	M _{fh} = -88.7

Page A11.15 Moment Distribution Method – Fixed Beam with Variable Inertia

	Sta	tic M / I Cu	rve	Tri	al M _A / I Cu	rve	Trial M _B / I Curve			
Beam	Avg Ord.	Mom. Arm	Moment	Avg Ord.	Avg Ord. Mom. Arm		Moment Avg Ord.		Moment	
Portion	у	х	ух	у	х	ух	у	х	ух	
1	106.7	2.67	284	110	2.06	226.7	6.7	2.67	17.8	
2	397.6	6.31	2,508	132.7	6.06	804.8	24.8	6.31	156.8	
3	770.9	10.16	7,835	142.7	10.01	1,429.1	48.2	10.16	489.7	
4	1,120.0	14.10	15,787	130.0	14.05	1,826.7	70.0	14.10	986.7	
5	1,440.0	18.07	26,027	110.0	18.06	1,986.7	90.0	18.07	1,626.7	
6	1,760.0	22.06	38,827	90.0	22.07	1,986.7	110.0	22.06	2,426.7	
7	1,614.5	26.13	42,182	67.3	26.13	1,757.6	123.6	26.02	3,217.0	
8	974.5	30.23	29,459	40.6	30.23	1,227.5	117.0	30.06	3,516.0	
9	420.0	34.35	14,427	17.5	34.35	601.1	90.8	34.12	3,098.9	
10	100.0	38.67	3,867	4.2	38.67	161.1	62.5	38.13	2,383.3	
	8,704.2 181,202		845.0		12,007.9	743.6		17,919.4		

It appears that the orientations of the trapezoids from the moment diagram were not considered when calculating x_{bar} for some areas. I calculate x_{bar} from the left of each area using $x_{bar} = 2/3$ (x_2 - x_1) for the triangular portion of areas with the point on left side and $x_{bar} = 1/3$ (x_2 - x_1) for the triangular portion of areas with the point on left side and $x_{bar} = 2/3$ (x_2 - x_1) for the triangular portion of areas with the point on the right side. My guess is that $x_{bar} = 2/3$ (x_2 - x_1) was used throughout the analysis regardless of the orientation of the trapezoid.

Static M / I Curve: The sum of the average ordinate, y is wrong in Bruhn. Adding up the values in his table yields 8,704 instead of 8,504. This gives a value for $x_{bar} = 179,809 / 8,704 = 20.66$ inch instead of 21.15 inch. The last four values in my column for Moment Arm, x take into account the x_{bar} discussion above. $x_{bar} = 181,202 / 8,704.2 = 20.82$ inch.

Trial M_A / I Curve: The last eight values in the column for Moment Arm, x take into account the x_{bar} discussion above. $x_{bar} = 12,008 / 845.0 = 14.21$ in

Trial M_B / I Curve: The last three values in the column for Moment Arm, x take into account the x_{bar} discussion above. $x_{bar} = 17,919.4 / 743.6 = 24.10$ in

Fixed End Moments My numbers yield $M_A = -341.7$ in-lb and $M_B = 782.3$ in-lb

Carry Over Factors My numbers yield $COF_{BA} = 0.543$ and $COF_{AB} = 0.670$

Constant, c $c_{BA} = 0.721$ and $c_{AB} = 0.877$

Stiffness Factors $K_{BA} = 0.721 I/L$ and $K_{AB} = 0.877 I/L$

Page A11.16 Moment Distribution Method – Fixed Beam with Variable Inertia

Figure A11.27

Moment / Inertia at x = 24 inches should be 1,920 not 1,420

Figure A11.30c

Moment / Inertia Diagram

Page A11.21 Moment Distribution Method – Frame with Missing Diagonal Shear Member

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures page A11.21

Example Problem 3, Figure A11.42

Member bh is missing an inertia value. I use a value of "2" in my solution.

Moment Distribution (Hardy Cross) Method

	Joi	nt a	Joi	nt b	Joi	nt c	Joi	nt d	Joi	nt e	Joi	nt f	Joi	nt g	Joi	nt h
Prop.	ab	ba	bc	cb	cd	dc	de	ed	ef	fe	fg	gf	gh	hg	ah	ha
I	4.0	4.0	4.0	4.0	2.0	2.0	0.5	0.5	0.5	0.5	3.0	3.0	3.5	3.5	1.0	1.0
L	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
ΣΚ	0.083		0.174		0.117		0.053		0.017		0.087		0.125		0.099	
DF Σ DF	ab ah	0.800 0.200 1	ba bc bg bh	0.3841 0.3841 0.0960 0.1358 1	cb cd cf	0.5714 0.2857 0.1429 1	dc de df	0.624 0.156 0.220 1	ed ef	0.500 0.500 1	fc fd fe fg	0.1920 0.1358 0.0960 0.5761 1	gb gf gh	0.1333 0.4000 0.4667 1	ha hb hg	0.1691 0.2391 0.5918 1

	M. Iner.	Length				
Member	I	L				
	(units)	(inch)				
ab	4.0	60				
bc	4.0	60				
cd	2.0	60				
de	0.5	60				
ef	0.5	60				
fg	3.0	60				
gh	3.5	60				
ah	1.0	60				
bg	1.0	60				
cf	1.0	60				
bh	2.0	84.85				
df	1.0	84.85				

Pro	op.	bg	gb	bh	hb	cf	fc	df	fd
I	-	1.0	1.0	2.0	2.0	1.0	1.0	1.0	1.0
L		60	60	84.85	84.85	60	60	84.85	84.85

— Moment of inertia for member bh is missing. I use 2.0 units.

Continued

	ab	ba	bc	cb	cd	dc	de	ed	ef	fe	fg	gf	gh	hg	ah	ha
Order Begin	8		5 100	Start 100	1		3		4		2 75	75	6		7	
1			-28.571	-57.143	-28.571	-14.286			-3.258	-6.516	-39.095	-19.547				
3					5.891	11.782	2.946	1.473	0.893	0 446						
5	-13.718	-27.435	-27.435	-13.718			0.440	0.000	0.000	0.440	10.405	20 800	24 277	12 120		
7	0.005	4.040									-10.405	-20.009	5.027	10.054	1.436	2.873
8	9.825	4.913	4.098	8.196	4.098	2.049									2.450	1.228
2 3					-0.923	-1.846	-0.462	-0.231	0.329	0.658	3.947	1.974				
4 5	-1.454	-2.909	-2.909	-1.454			-0.025	-0.049	-0.049	-0.025						
6 7											-1.327	-2.655	-3.097 0.247	-1.549 0.494	0.071	0.141
8	1.107	0.554	0.491	0.083	0.401	0.246									0.277	0.138
2			0.431	0.305	0.400	0.240	0.054	0.005	0.075	0.149	0.896	0.448				
3 4					-0.102	-0.204	-0.051	-0.025	-0.025	-0.012						
5 6	-0.135	-0.270	-0.270	-0.135							-0.132	-0.265	-0.309	-0.154		
7 8	0.104	0.052											0.019	0.038	0.005 0.026	0.011 0.013
1			0.025	0.050	0.025	0.012			0.008	0.017	0.100	0.050				
3					-0.004	-0.007	-0.002	-0.001	0.004	0.002	0.100	0.000				
5	-0.008	-0.015	-0.015	-0.008			-0.002	-0.004	-0.004	-0.002	0.040	0.007	0.004	0.040		
6 7											-0.013	-0.027	-0.031 0.002	-0.016 0.003	0.000	0.001
8	0.006	0.003	-0.0015	-0.0030	-0.0015	-0.0008									0.001	0.001
2					0.0005	0.0009	0.0002	0.0001	0.0008	0.0016	0.0098	0.0049				
4	0.0005	0.0009	0.0009	0.0005			-0.0002	-0.0005	-0.0005	-0.0002						
6	0.0005	0.0003	0.0003	0.0005							-0.0013	-0.0026	-0.0031	-0.0015	0.0004	0.0004
8	-0.0004	-0.0002											0.0002	0.0004	-0.0001	-0.0001
1 2			-0.001	-0.001	-0.001	0.000			0.000	0.000	0.001	0.000				
3 4					0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000						
5	0.000	0.000	0.000	0.000							0.000	0.000	0.000	0.000		
7	0.000	0.000									0.000	0.000	0.000	0.000	0.000	0.000
1	0.000	0.000	-0.0002	-0.0003	-0.0002	-0.0001			0.0000	0.0000	0.0004	0.0000			0.000	0.000
3					0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000				
4 5	0.0001	0.0001	0.0001	0.0001			0.0000	0.0000	0.0000	0.0000						
6 7											0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
8 7 Iter.	0.0000	0.0000	45.41	36.77	-19.10	-2.25	2.84	2.03	-2.03	-5.28	28.98	34.17	-22.42	-3.27	0.0000 4.27	0.0000 4.41
												-				
	ab	ba	bc	cb	cd	dc	de	ed	ef	fe	fg	gf	gh	hg	ah	ha
1st Iter. 2nd Iter.	-3.89 -4.240	-22.52 -24.878	43.99 45.183	29.14 35.881	-22.68 -19.506	-2.50 -2.301	3.39 2.906	2.37 2.085	-2.37 -2.085	-6.07 -5.436	25.50 28.120	34.64 33.962	-19.25 -22.101	-2.08 -3.140	3.89 4.240	4.10 4.380
3rd Iter. 4th Iter	-4.271 -4.273	-25.096 -25.108	45.404 45.414	36.729 36.771	-19.116 -19.095	-2.259 -2.254	2.842 2.839	2.035 2.031	-2.035 -2.031	-5.299 -5.284	28.884 28.971	34.146 34 169	-22.391 -22.420	-3.256 -3.269	4.271 4.273	4.404 4.405
5th Iter.	-4.2730	-25.1076	45.4131	36.7683	-19.0961	-2.2539	2.8387	2.0304	-2.0304	-5.2829	28.9796	34.1713	-22.4232	-3.2699	4.2730	4.4056
7th Iter.	-4.2729	-25.1072	45.4128	36.7668	-19.0968	-2.2539	2.8388	2.0304	-2.0304	-5.2827	28.9804	34.1714	-22.4235	-3.2700	4.2729	4.4056
FINAL MOMENT	-4.273	-25.107	45.413	36.767	-19.097	-2.254	2.839	2.030	-2.030	-5.283	28.980	34.171	-22.424	-3.270	4.273	4.406
	1 260	7 16								V -	1 050	5 Ih				
VC =	1.309	ui u								v _f =	1.052	u u				
V _c = (M	_{cb} + M _{bc}) / 60 in			$V_c + V_f =$	2.42	lb			V _f = (N	/I _{fg} + M _{gt}	;) / 60 in				
				Externa	I Shear =	20	lb		M	ultiply by	/ 8.26	to de	velop	20 I	b shear	reaction
Moment	ab	ba	bc	cb	cd	dc	de	ed	ef	fe	fg	gf	gh	hg	ah	ha
M (in-lb)	-35.3	-207.3	375.0	303.6	-157.7	-18.6	23.4	16.8	-16.8	-43.6	239.3	282.2	-185.2	-27.0	35.3	36.4

Continued

	bg	gb	bh	hb	cf	fc	df	fd
Order Begin 1 2 3 4					-14.286 -6.516	-7.143 -13.032	-4.607 4.166	-9.215 2.083
5 6 7 8	-6.859 -3.468	-3.429 -6.936	-9.700 2.031	-4.850 4.062				
1 2 3 4 5 6 7 8	-0.727 -0.442	-0.364 -0.885	-1.028 0.100	-0.514 0.200	2.049 0.658	1.024 1.316	0.465 -0.653	0.930 -0.326
1 2 3 4 5 6 7 8	-0.067 -0.044	-0.034 -0.088	-0.095 0.008	-0.048 0.015	0.246 0.149	0.123 0.299	0.106 -0.072	0.211 -0.036
1 2 3 4 5 6 7 8	-0.004 -0.004	-0.002 -0.009	-0.005 0.001	-0.003 0.001	0.012 0.017	0.006 0.033	0.012 -0.003	0.024 -0.001
1 2 3 4 5 6 7 8	0.0002 -0.0004	0.0001 -0.0009	0.0003 0.0001	0.0002 0.0002	-0.0008 0.0016	-0.0004 0.0033	0.0012 0.0003	0.0023 0.0002
1 2 3 4 5 6 7 8	0.0001 0.0000	0.0001 -0.0001	0.0002 1.55E-05	8.82E-05 3.09E-05	-0.0004 0.0002	-0.0002 0.0003	0.0001 0.0001	0.0002 0.0001
1 2 3 4 5 6 7 8	2.83E-05 -6.49E-06	1.41E-05 -1.3E-05	4E-05 3.44E-06	2E-05 6.88E-06	-7.91E-05 1.5E-05	-3.95E-05 3E-05	1.06E-05 2.14E-05	2.12E-05 1.07E-05
	-11.62	-11.75	-8.69	-1.14	-17.67	-17.37	-0.58	-6.33

	bg	gb	bh	hb	cf	fc	df	fd
1st Iter.	-10.33	-10.37	-7.67	-0.79	-20.80	-20.17	-0.44	-7.13
2nd Iter.	-11.497	-11.614	-8.597	-1.102	-18.095	-17.834	-0.629	-6.528
3rd Iter.	-11.608	-11.736	-8.685	-1.135	-17.700	-17.413	-0.596	-6.353
4th Iter.	-11.616	-11.747	-8.690	-1.136	-17.671	-17.373	-0.587	-6.330
5th Iter.	-11.6167	-11.7479	-8.6894	-1.1357	-17.6697	-17.3702	-0.5851	-6.3280
6th Iter.	-11.6166	-11.7479	-8.6892	-1.1356	-17.6699	-17.3700	-0.5849	-6.3277
7th Iter.	-11.6166	-11.7479	-8.6891	-1.1356	-17.6699	-17.3701	-0.5849	-6.3277
FINAL								
MOMENT	-11.617	-11.748	-8.689	-1.136	-17.670	-17.370	-0.585	-6.328
(in-lb)								

Moment	bg	gb	bh	hb	cf	fc	df	fd	
M (in-lb)	-95.9	-97.0	-71.7	-9.4	-145.9	-143.4	-4.8	-52.2	

Comparison of Moments from the Moment Distribution (Hardy Cross) Method

Five Iterations

Iteration	ab	ba	bc	cb	cd	dc	de	ed	ef	fe	fg	gf	gh	hg	ah	ha	bg
			100	100							75	75					
1	-13.718	-27.435	-28.571	-57.143	-28.571	-14.286	2.946	1.473	-3.258	-6.516	-39.095	-19.547	-24.277	-12.139	1.436	2.873	-6.859
2	9.825	4.913	-27.435	-13.718	5.891	11.782	0.446	0.893	0.893	0.446	-10.405	-20.809	5.027	10.054	2.456	1.228	-3.468
3	-1.454	-2.909	4.098	8.196	4.098	2.049	-0.462	-0.231	0.329	0.658	3.947	1.974	-3.097	-1.549	0.071	0.141	-0.727
4	1.107	0.554	-2.909	-1.454	-0.923	-1.846	-0.025	-0.049	-0.049	-0.025	-1.327	-2.655	0.247	0.494	0.277	0.138	-0.442
5	-0.135	-0.270	0.491	0.983	0.491	0.246	-0.051	-0.025	0.075	0.149	0.896	0.448	-0.309	-0.154	0.005	0.011	-0.067
Σ	-4.37	-25.15	45.67	36.86	-19.01	-2.06	2.85	2.06	-2.01	-5.29	29.02	34.41	-22.41	-3.29	4.25	4.39	-11.56

Eight Iterations

Iteration	ab	ba	bc	cb	cd	dc	de	ed	ef	fe	fg	gf	gh	hg	ah	ha	bg
			100	100							75	75					
1	-13.718	-27.435	-28.571	-57.143	-28.571	-14.286	2.946	1.473	-3.258	-6.516	-39.095	-19.547	-24.277	-12.139	1.436	2.873	-6.859
2	9.825	4.913	-27.435	-13.718	5.891	11.782	0.446	0.893	0.893	0.446	-10.405	-20.809	5.027	10.054	2.456	1.228	-3.468
3	-1.454	-2.909	4.098	8.196	4.098	2.049	-0.462	-0.231	0.329	0.658	3.947	1.974	-3.097	-1.549	0.071	0.141	-0.727
4	1.107	0.554	-2.909	-1.454	-0.923	-1.846	-0.025	-0.049	-0.049	-0.025	-1.327	-2.655	0.247	0.494	0.277	0.138	-0.442
5	-0.135	-0.270	0.491	0.983	0.491	0.246	-0.051	-0.025	0.075	0.149	0.896	0.448	-0.309	-0.154	0.005	0.011	-0.067
6	0.104	0.052	-0.270	-0.135	-0.102	-0.204	-0.012	-0.025	-0.025	-0.012	-0.132	-0.265	0.019	0.038	0.026	0.013	-0.044
7	-0.008	-0.015	0.025	0.050	0.025	0.012	-0.002	-0.001	0.008	0.017	0.100	0.050	-0.031	-0.016	0.000	0.001	-0.004
8	0.006	0.003	-0.015	-0.008	-0.004	-0.007	-0.002	-0.004	-0.004	-0.002	-0.013	-0.027	0.002	0.003	0.001	0.001	-0.004
Σ	-4.27	-25.11	45.41	36.77	-19.10	-2.25	2.84	2.03	-2.03	-5.28	28.97	34.17	-22.42	-3.27	4.27	4.41	-11.62

Fourteen Iterations

Iteration	ab	ba	bc	cb	cd	dc	de	ed	ef	fe	fg	gf	gh	hg	ah	ha	bg
			100	100							75	75					
1	-13.7175	-27.4350	-28.5714	-57.1429	-28.5714	-14.2857	2.9455	1.4728	-3.2579	-6.5158	-39.0949	-19.5475	-24.2775	-12.1387	1.4363	2.8725	-6.8588
2	9.8250	4.9125	-27.4350	-13.7175	5.8910	11.7820	0.4463	0.8926	0.8926	0.4463	-10.4046	-20.8093	5.0269	10.0538	2.4563	1.2281	-3.4682
3	-1.4544	-2.9088	4.0978	8.1956	4.0978	2.0489	-0.4615	-0.2308	0.3289	0.6579	3.9472	1.9736	-3.0972	-1.5486	0.0706	0.1411	-0.7272
4	1.1071	0.5535	-2.9088	-1.4544	-0.9231	-1.8461	-0.0245	-0.0491	-0.0491	-0.0245	-1.3274	-2.6547	0.2470	0.4940	0.2768	0.1384	-0.4425
5	-0.1349	-0.2697	0.4913	0.9826	0.4913	0.2457	-0.0509	-0.0255	0.0747	0.1494	0.8961	0.4481	-0.3086	-0.1543	0.0054	0.0108	-0.0674
6	0.1036	0.0518	-0.2697	-0.1349	-0.1019	-0.2038	-0.0123	-0.0246	-0.0246	-0.0123	-0.1323	-0.2645	0.0188	0.0376	0.0259	0.0129	-0.0441
7	-0.0077	-0.0155	0.0250	0.0499	0.0250	0.0125	-0.0019	-0.0009	0.0084	0.0167	0.1004	0.0502	-0.0313	-0.0157	0.0005	0.0009	-0.0039
8	0.0058	0.0029	-0.0155	-0.0077	-0.0037	-0.0075	-0.0019	-0.0037	-0.0037	-0.0019	-0.0134	-0.0268	0.0016	0.0032	0.0015	0.0007	-0.0045
9	0.0005	0.0009	-0.0015	-0.0030	-0.0015	-0.0008	0.0002	0.0001	0.0008	0.0016	0.0098	0.0049	-0.0031	-0.0015	0.0001	0.0001	0.0002
10	-0.0004	-0.0002	0.0009	0.0005	0.0005	0.0009	-0.0002	-0.0005	-0.0005	-0.0002	-0.0013	-0.0026	0.0002	0.0004	-0.0001	-0.0001	-0.0004
11	0.0002	0.0005	-0.0007	-0.0015	-0.0007	-0.0004	0.0001	0.0000	0.0001	0.0002	0.0009	0.0005	-0.0003	-0.0002	0.0000	0.0000	0.0001
12	-0.0002	-0.0001	0.0005	0.0002	0.0002	0.0003	0.0000	-0.0001	-0.0001	0.0000	-0.0001	-0.0003	0.0000	0.0001	-0.0001	0.0000	0.0000
13	0.0001	0.0001	-0.0002	-0.0003	-0.0002	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	0.0000	0.0000	0.0001	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Σ	-4.27	-25.11	45.41	36.77	-19.10	-2.25	2.84	2.03	-2.03	-5.28	28.98	34.17	-22.42	-3.27	4.27	4.41	-11.62
Summary

Page A11.23 Example Problem 12

Column 1

The distribution factor at joint C equals

(.00374 / .00374 + .01198) = .238

should be

The distribution factor at joint C equals

0.00374 / (0.00374 + 0.01198) = 0.238

Thanks to Dr. Howard W. Smith.

Column 2 Add reference "NACA TN-534" to Figure A11.46 and Figure A11.47

Page A11.24 Fixed-End Moment Coefficient, Uniformly Varying Load – Figure A11.49

Figure A11.49 The curves are derived from NACA TN-534, Table C, page 44.

I have ended C_A at L / j = 4.1 (dashed curve to L / j = 4.5) and C_B at L / j = 4.6 per Graph IV on page 48 of NACA TN-534.

Page A11.25 Fixed-End Moment Coefficient, Concentrated Load – Figure A11.52

Figure A11.52 The curves are derived from NACA TN-534, Table D, page 45.

For L/j = 1.0 and a/L = 0.8 I am assuming that the value 1.2015 should be 1.0215.

For L/j = 1.0 and a/L = 0.9 I am assuming that the value .9654 should be .9854.

Page A11.25 Fixed-End Moment Coefficient for M_A, Concentrated Load – Figure A11.54

Figure A11.54 The curves are derived from NACA TN-534, Table E, page 46.

For L/j = 2.0 and a/L = 0.5 of M_A I am assuming that the value 1.0370 should be 1.0570.

Page A11.25 Fixed-End Moment Coefficient for M_B, Concentrated Load – Figure A11.55

Figure A11.55 The curves are derived from NACA TN-534, Table E, page 46.

For L/j = 5.0 and a/L = 0.3 I am using the value 0.6846 instead of 0.6746.

Page A11.26 Moment Distribution Method – Continuous Beam

Figure A11.57 Effect of Axial Load on Moment Distribution

It looks like the Joint C balance is wrong and the errors follow through Joint D.

This yields values of 183.1 vs. 148, 280.8 vs. 314 and Final Moments of \pm 757.5 vs. \pm 705.8 and \pm 280.8 versus \pm 314.

Page A11.26 Column Distribution Factor – Figure A11.56

Figure A11.56 The curve is derived from NACA TN-534, Table B, page 43.

I use the title for the abscissa in the NACA Technical Note of "Column Distribution Coefficient" instead of "Column Distribution Factor".

Page A11.27 Biplane Wing Example

Figure A11.59

Bi-Plane Wing After ten iterations I get the following moments:

M = \pm 38,400 in-lb M = \pm 20,855 in-lb

Solution

к		0	0.1498		0.0919	0.2355		0.2355	0.0919		0.1498	0
ΣΚ / Κ		0	1		0.281	0.719		0.719	0.281		1	0
COF		0	0.618		0	0.589		0.589	0		0.618	0
Fixed End Moments		-38,400	28,540		-28,540	19,175		-19,175	28,540		-28,540	38,400
First Balancing		0	9,860 🔨		2,629	6,736 🦯		-6,736	-2,629 🥿		-9,860	0
Carry Over			0	\frown	6,091	-3,966 🛩		3,966	-6,091		0	
Second Balancing		0	0 🔨		-596	-1,528 🔨		- 1,528	596 🔍		• 0	0
Carry Over			0 🔺		0	900 🗕	\frown	-900	0		0	
Third Balancing		0	0 🔨		-253	-647 🧹		647	253 🥄		· 0	0
Carry Over			0 -		0	381 🔺	\frown	-381	0		0	
Fourth Balancing		0	0 🔨		-107	-274 🔨		274	107 🥄		• 0	0
Carry Over			0 -		0	161 📕		-161	0		0	
Fifth Balancing		0	0 🔨		-45	-116 🥄		· 116	45 🔨		· 0	0
Carry Over			0 -		0	68		-68	0		0	
Sixth Balancing		0	0 🔨		-19	-49 🔨		49	19 🥄		• 0	0
Carry Over			0 -		0	29 🔺		-29	0		0	
Seventh Balancing		0	0 🔨		-8	-21 🥄		· 21	8 🔨		• 0	0
Carry Over			0 -		0	12 🔺		-12	0		0	
Eighth Balancing		0	0 🔨		3	-9 🥆		9	3 🔨		- 0	0
Carry Over			0 -		0	5		-5	0		0	
Ninth Balancing		0	0 🔨		· -1	-4 🔨		· 4	1 🥄		• 0	0
Carry Over			0 -		0	2		-2	0		0	
Tenth Balancing		0	0		-1	-2		2	1		0	0
Final Moments	Σ	-38,400	38,400	Σ	-20,855	20,855	Σ	-20,855	20,855	Σ	-38,400	38,400

Page A12.6 Slope Deflection Method – Elevator Beam Example

Column 2,
$$K = E I/L = (10,000,000 \ x \ 0.03339) 40 = 8347$$

should be $K = E I/L = 10,000,000 \ (0.03339) / 40 = 8,347$

Column 2, just above equation (4),

$$M_{4-3} = 2 K (2 \theta_4 - \theta_3 - 3 \phi) + M_{F4-5}$$
$$M_{4-3} = 2 K (2 \theta_4 + \theta_3 - 3 \phi) + M_{F4-5}$$

should be

Page A13.3 Method 3 – Section Properties

Column 2, Equation 13

-(13) should be (13)

Thanks to Dr. Howard W. Smith.

Page A13.8 Beam Bending Stresses – Neutral Axis Method

Column 2, Stress on Stringer 1 There is a minus sign missing.

$$\sigma_{b1} = \begin{bmatrix} 0.002355 \ x \ (-38000) - (-.00046 \ x \ 713000) \end{bmatrix} \dots \text{ should be}$$

$$\sigma_{b1} = -\begin{bmatrix} 0.002355 \ (-38,000) - (-0.00046 \ x \ 713,000) \end{bmatrix} \dots$$

Column 2, Stress on Stringer 9

$$\sigma_{b9} = -\left[238.5\right]15.39 = \left[3868\right]6.89 = -30320 \# / in^2 \text{ should be}$$

$$\sigma_{b9} = -\left[238.5\right]15.39 - \left[3,868\right]6.89 = -30,320 \ lb / in^2$$

Page A13.12 Beam Bending Stresses

Column 1 ...

Figure A13.17 Stainless Steel and Aluminum Alloy need to be reversed (flipped, exchanged) to match the analysis.

Note the difference between Fig.A13.17 and Fig.A13.18 when the stiffness ratios are calculated and substituted.

Thanks to Jeremy deNoyelles.

Column 2 ...

In the equation for ly, 0.165 should be 0.1615. $I_x = 28.27$ should be 28.33

See the slide rule disclaimer on p. A13.13, column 2.

Thanks to Chris Boshers.

Page A13.13 Beam Bending Stresses

-100 00	should be	-10,000

$$\sigma_{c} = -[0.1797 x 5000 - (-0.0296)(-10000)]x - [(0.0403)(-100,00) - (-.0296 x 5000)]y$$

should be

$$\sigma_c = -[0.1797 x 5,000 - (-0.0296)(-10,000)]x - [(0.0403)(-10,000) - (-.0296 x 5,000)]y$$

Thanks to Chris Boshers.

Page A14.8 Shear Flow in a Zee Section

Column 2, Table A14.3 Portions 1 and 4: $i_x = .000017$ should be $i_x = 0.000083$ $\Sigma i_x = 0.0477$ should be $\Sigma i_x = 0.0459$ $I_x = .6035$ should be $I_x = 0.6036$

Page A14.9 Shear Flow in a Zee Section

Column 1	2 ϕ = 25° - 32.2' or ϕ = 12° - 46.1' should be 2 ϕ = 25° + 32.2' or ϕ = 12° + 46.1'
Column 2.	Solution by Neutral Axis Method θ = 42° + 46' and in Figure A14.28 α = 87° + 17'

Page A14.10 Shear Flow in a Zee Section – Neutral Axis Method

 $V_n = 10000 \text{ x} \sin 45^\circ - 29' = 7130 \text{ lb}$ should be $V_n = 10,000 \sin (45^\circ + 29') = 7,130 \text{ lb}$

Page A14.10 Shear Flow in a Zee Section – The "K" Method

k₁ = -7.406	l calculate	k ₁ = -7.408
k ₂ = 3.257	l calculate	k ₂ = 3.258
k₃ = 34.25	l calculate	k ₃ = 34.264

Page A15.10 Single Cell Wing Beam, Example 2

Bottom of column 2:

$$\sum M_o = 1000 x 2 + 400 x 3 + 17123 = 20323 \text{ in.lb.}$$
 should be
$$\sum M_o = 1000 (2) + 400 (3) + 32,257 = 35,457 \text{ in-lb}$$

Page A15.18 Shear Flow in a Symmetrical Five Cell Beam – Bending

Solution 1

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures page A15.18

Final Shear Flows

Flange and Web Data

Thickness, t (inches)

Assumed Static Condition for Shear Flow, qs

Table A15.2

1	$\Sigma~\text{q}_{\text{s}}$ L / t for each Cell	18,	182	27,	273	31,818		48,485		87,8	379
2	Σ L / t for each Cell	856	6.25	95	50	1,0	00	1,250		1,33	3.33
3	L / t of Cell Web		2	00	2	50 25		50 3		33	
4	Carry Over Factor, C		0.2105	0.2336	0.2500	0.2632	0.2000	0.2500	0.2500	0.2667	
5	$q' = -\Sigma q_s L/t / \Sigma L/t$	-21	.234	-28.	708	-31.	818	-38.	788	-65.	909
6	q'' = Cq'	-6.	706	-4.470	-8.373	-7.177	-9.697	-6.364	-17.576	-9.6	397
7	q''' = Cq''	-3.	000	-1.412	-4.441	-3.211	-5.985	-3.375	-2.586	-5.9	985
8	Carry Over	-1.	367	-0.632	-2.420	-1.463	-1.490	-1.839	-1.596	-1.4	190
9	Carry Over	-0.	713	-0.288	-0.777	-0.763	-0.859	-0.591	-0.397	-0.8	359
10	Carry Over	-0.	249	-0.150	-0.427	-0.266	-0.247	-0.324	-0.229	-0.2	247
11	Carry Over	-0.	135	-0.052	-0.135	-0.144	-0.138	-0.103	-0.066	-0.1	38
12	Carry Over	-0.	044	-0.028	-0.074	-0.047	-0.042	-0.057	-0.037	-0.0)42
13	Carry Over	-0.	024	-0.009	-0.023	-0.026	-0.023	-0.018	-0.011	-0.0)23
14	Carry Over	-0.	008	-0.005	-0.013	-0.008	-0.007	-0.010	-0.006	-0.0)07
15	Carry Over	-0.	004	-0.002	-0.004	-0.004	-0.004	-0.003	-0.002	-0.0)04
16	Carry Over	-0.0	013	-0.0009	-0.0022	-0.0014	-0.0013	-0.0017	-0.0011	-0.0	013
17	Carry Over	-0.0	007	-0.0003	-0.0007	-0.0008	-0.0007	-0.0005	-0.0003	-0.0	007
18	Carry Over	-0.0	002	-0.0002	-0.0004	-0.0002	-0.0002	-0.0003	-0.0002	-0.0	002
19	Carry Over	-0.0	001	0.0000	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0	001
20	Carry Over	0.0	000	0.0000	-0.0001	0.0000	0.0000	-0.0001	0.0000	0.00	000
	Shear Flow q	-33	.485	-52.	448	-63.	425	-73.	981	-84.	404

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5
Shear Flow q	-33.485	-52.448	-63.425	-73.981	-84.404
Carry Over Factor	0.2105	0.2336 0.2500	0.2632 0.2000	0.2500 0.2500	0.2667
Reiteration	-12.251	-7.049 -16.691	-13.112 -18.495	-12.685 -22.508	-18.495
$q' = -\Sigma q_s L/t / \Sigma L/t$	-21.234	-28.708	-31.818	-38.788	-65.909
Shear Flow q	-33.485	-52.449	-63.425	-73.981	-84.404
Carry Over Factor	0.2105	0.2336 0.2500	0.2632 0.2000	0.2500 0.2500	0.2667
Second Reiteration	-12.251	-7.049 -16.691	-13.112 -18.495	-12.685 -22.508	-18.495
$q' = -\Sigma q_s L/t / \Sigma L/t$	-21.234	-28.708	-31.818	-38.788	-65.909
Shear Flow g	-33.485	-52.449	-63.426	-73.981	-84.404

Bruhn Errata

Shear Flow in a Symmetrical Five Cell Beam - Pure Bending

Closing Shear Flows

Assumed Static Condition

Final Shear Flows

Solution 2

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures page A15.21

Flange and Web Data

Thickness, t (inches)

Assumed Static Condition for Shear Flow, qs

[0	0	0	0	0	0	0	0	0	0]
36.36	Cell 1	18.18	Cell 2	9.09	Ce	9.09	Ce	9.09	Ci	ell 5	18.18
Start	0		0			0		0		0	

1	$\Sigma \ q_s \ L$ / t for each Cell	-2,045		-1,3	-1,364)	7	58	3,0	30
2	Σ L / t for each Cell	856	6.25	95	50	1,0	00	1,2	250	1,33	3.33
3	L / t of Cell Web		2	00	0 25		50 25		33	33	
4	Carry Over Factor, C		0.2105	0.2336	0.2500	0.2632	0.2000	0.2500	0.2500	0.2667	
5	q' = - Σq _s L/t / Σ L/t	2.3	389	1.4	35	0.0	00	-0.0	606	-2.2	273
6	q" = Cq'	0.3	335	0.503	0.000	0.359	-0.152	0.000	-0.606	-0.1	152
7	q''' = Cq''	0.1	117	0.071	0.055	0.126	-0.152	0.041	-0.040	-0.1	52
8	Carry Over	0.0)29	0.025	-0.007	0.031	0.000	-0.005	-0.040	0.0	00
9	Carry Over	0.0	004	0.006	0.008	0.004	-0.011	0.006	0.000	-0.0)11
10	Carry Over	0.0	034	0.0009	-0.0018	0.0036	0.0016	-0.0014	-0.0030	0.00	016
11	Carry Over	-0.00	0218	0.000711	0.001371	-0.000234	-0.001105	0.001042	0.000425	-0.00	1105
12	Carry Over	0.00	0486	-0.000046	-0.000352	0.000520	0.000367	-0.000268	-0.000295	0.000	0367
13	Carry Over	-0.00	0093	0.000102	0.000234	-0.000100	-0.000141	0.000177	0.000098	-0.00	0141
14	Carry Over	0.00	0078	-0.000020	-0.000063	0.000084	0.000069	-0.000048	-0.000037	0.000	0069
15	Carry Over	-0.00	0019	0.000017	0.000040	-0.000021	-0.000021	0.000031	0.000018	-0.00	0021
16	Carry Over	0.00	0013	-0.000004	-0.000011	0.000014	0.000012	-0.000008	-0.000006	0.000	0012
17	Carry Over	-0.00	0004	0.000003	0.000007	-0.000004	-0.000004	0.000005	0.000003	-0.00	0004
18	Carry Over	0.00	0002	-0.000001	-0.000002	0.000002	0.000002	-0.000001	-0.000001	0.000	0002
19	Carry Over	-0.00	0001	0.000000	0.000001	-0.000001	-0.000001	0.000001	0.000001	-0.00	0001
20	Carry Over	0.00	0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000	0000

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5
Shear Flow q	2.879	2.097	0.211	-1.254	-2.586
Carry Over Factor	0.2105	0.2336 0.2500	0.2632 0.2000	0.2500 0.2500	0.2667
Reiteration	0.490	0.606 0.055	0.524 -0.313	0.042 -0.690	-0.313
$q' = -\Sigma q_s L/t / \Sigma L/t$	2.389	1.435	0.000	-0.606	-2.273
Shear Flow q	2.879	2.097	0.211	-1.254	-2.586
Carry Over Factor	0.2105	0.2336 0.2500	0.2632 0.2000	0.2500 0.2500	0.2667
Second Reiteration	0.490	0.606 0.055	0.524 -0.313	0.042 -0.690	-0.313
$q' = -\Sigma q_s L/t / \Sigma L/t$	2.389	1.435	0.000	-0.606	-2.273
Shear Flow q	2.879	2.097	0.211	-1.254	-2.586

Closing Shear Flows

Assumed Static Condition

0 Cell 1		0 Cell 2	0 Cell 3		0 Cell 4		0 V Cell 5	
36.36 18. 0	.18	9.09		9.09	7 0	9.09	, 0	18.2

Final Shear Flows

Page A15.22 Shear Flow in a Symmetrical Ten-Cell Beam

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures page A15.22

Closing Shear Flows – Left Half

Assumed Static Condition – Left Half

Final Shear Flow Values – Left Half

Assumed Static Condition – Right Half

Final Shear Flow Values – Right Half

Bruhn Errata

Final Shear Flow Values

Assumed Static Condition for Shear Flow $\ensuremath{\mathsf{q}}_{\ensuremath{\mathsf{s}}}$

Bruhn Errata

Summary

Cell 1	I Cell 2		Cell 3		Cell 4		Ce		
2,207		0		0	0			0	
211.32	186	6.38 180		6.38	186.38		186.38		
53	.19	53	.19	53	.19	53	.19	53	.19
0.2854	0.2517	0.2854	0.2854	0.2854	0.2854	0.2854	0.2854	0.2729	0.2
-10.442		0		0		0		0	
0	-2.980	0	0	0	0	0	0	-1.952	
-0.750	0	0	-0.850	0	0	-0.557	0	0	-C
0	-0.214	-0.243	0	-0.159	-0.243	0	-0.159	-0.496	
-0.115	0	-0.045	-0.130	-0.069	-0.045	-0.187	-0.069	0	-0
-0.011	-0.033	-0.057	-0.013	-0.066	-0.057	-0.020	-0.066	-0.086	-C
-0.023	-0.0033	-0.023	-0.026	-0.022	-0.023	-0.043	-0.022	-0.005	-C
-0.007	-0.006	-0.014	-0.007	-0.019	-0.014	-0.008	-0.019	-0.018	-C
-0.005	-0.0019	-0.0075	-0.0057	-0.0061	-0.0075	-0.0104	-0.0061	-0.0026	-0
-0.002	-0.0014	-0.0034	-0.0027	-0.0051	-0.0034	-0.0025	-0.0051	-0.0043	-0
-0.0012	-0.00067	-0.0022	-0.0014	-0.0017	-0.0022	-0.0027	-0.0017	-0.0010	-0
-0.0007	-0.00035	-0.00087	-0.00083	-0.00140	-0.00087	-0.00076	-0.00140	-0.00116	-0.
-0.00031	-0.00021	-0.00063	-0.00035	-0.00046	-0.00063	-0.00073	-0.00046	-0.00033	-0.
-0.00021	-0.00009	-0.00023	-0.00024	-0.00039	-0.00023	-0.00023	-0.00039	-0.00034	-0.
-0.00008	-0.00006	-0.00018	-0.00009	-0.00013	-0.00018	-0.00021	-0.00013	-0.00011	-0.
-0.00006	-0.00002	-0.00006	-0.00007	-0.00011	-0.00006	-0.00007	-0.00011	-0.00010	-0.
Cell 1	Cell 1 Cell 2		Cell 3		Cell 4		Cell 5		
-11.358	-3.	638	-1.3	389	-1.3	229	-2.9	918	

	Cell 6		Cell 7		Cell 8		Ce	ll 9	Cell 10
	1,3	33)	1,2	205	()	-4,745
	194	.92	203	6.46	211	.17	218	8.89	227.57
53	.19	61	.73 61		.73 69.		.44 69		.44
729	0.2854 0.3034		0.3167 0.2923		0.3034 0.3173		0.3289 0.3052		0.3173
	-6.8	340)	-5.	707	(0	20.850
52	0	0	-2.075	-1.731	0	0	-1.810	6.615	0
	-0.533	-1.205	0	0	-1.113	1.580	0	0	1.466
96	0	0	-0.527	0.142	0	0	0.148	0.465	0
	-0.179	-0.122	0	0	-0.113	0.202	0	0	0.187
86	-0.019	0	-0.091	0.027	0	0	0.028	0.059	0
05	-0.042	-0.020	-0.006	0.000	-0.019	0.029	0.000	0.000	0.027
18	-0.007	-0.002	-0.019	0.003	-0.002	0.000	0.003	0.008	0.000
26	-0.0100	-0.0050	-0.0028	-0.0005	-0.0046	0.0038	-0.0005	0.0000	0.0036
43	-0.0024	-0.0011	-0.0045	-0.0002	-0.0010	-0.0002	-0.0002	0.0011	-0.0002
)10	-0.0026	-0.0015	-0.0010	-0.0003	-0.0014	0.0003	-0.0004	-0.0001	0.00027
116	-0.00072	-0.00044	-0.00123	-0.00033	-0.00041	-0.00014	-0.00035	0.00009	-0.00013
033	-0.00070	-0.00050	-0.00035	-0.00016	-0.00046	-0.00009	-0.00017	-0.00004	-0.00008
034	-0.00022	-0.00016	-0.00036	-0.00017	-0.00015	-0.00007	-0.00017	-0.00003	-0.00006
D11	-0.00020	-0.00017	-0.00012	-0.00007	-0.00015	-0.00007	-0.00007	-0.00002	-0.00006
D10	-0.00007	-0.00006	-0.00011	-0.00007	-0.00005	-0.00003	-0.00007 -0.00002		-0.00003
	Ce	II 6	Cell 7		Cell 8		Cell 9		Cell 10
	-8.995		-4.290		-5.1	147	5.516		22.534

Page A15.11 Single Cell Wing Beam – Multiple Stringers

Column 1

$$q = \frac{M}{2 A} = \frac{20323}{2 x 493} = -20.6 \ lb./in.$$
 should be

$$q = -\frac{M}{2A} = -\frac{35,457}{2(493)} = -36 \, lb/in$$

Figure A15-28

A = 125.9° " should be A = 125.9 in^2

Figure A15-29

Bruhn Errata

Table A15.1

Check Column 13 in Table A15.1.

							i	q _v	q z		A _{cell}		q
								-0.485	-5.264	1	493.0		-35.96
1 Member	2 Total Area* A (in ²)	3 Arm Z (in ²)	4 ZA (in ²)	5 Arm X (in)	6 XA (in ²)	7 Σ ΖΑ (in ³)	8 Σ ΧΑ (in)	9 q_y Σ xA (in ²)	10 q z Σ zA (in ³)	11 q_{xz} Σ xA + Σ zA (in ³)	12 m (in ²)	13 q_{xz} m (lb/in)	14 Final q (Ib/in)
1 2 3 4 5 6 7	0.141 0.141 0.380 0.168 0.168 0.168 0.168	4.396 6.446 7.396 7.766 7.946 7.896 7.696	0.619 0.907 2.810 1.308 1.338 1.330 1.296	-17.41 -13.54 -9.11 -5.44 -0.86 3.14 7.14	-2.450 -1.905 -3.462 -0.916 -0.145 0.529 1.202	0 0.619 1.526 4.336 5.644 6.982 8.312	0 -2.450 -4.355 -7.817 -8.733 -8.878 -8.878 -8.349	0 1.189 2.114 3.795 4.240 4.310 4.053	0 -3.256 -8.031 -22.826 -29.710 -36.754 -43.754	0 2.067 5.917 19.031 25.471 32.444 39.700	55.2 44.2 32.0 38.2 33.0 33.2	0.0 114.1 261.5 609.0 973.0 1,070.7 1,318.1	-36 -33.9 -30.0 -16.9 -10.5 -3.5 3.7
8 9 16 15 14 13	0.168 0.290 0.350 0.310 0.310 0.310	7.296 6.896 -8.411 -8.224 -7.734 -7.004	1.229 2.000 -2.944 -2.549 -2.398 -2.171	11.74 15.39 15.39 9.64 3.32 -2.96	1.977 4.463 5.387 2.988 1.029 -0.918	9.608 10.836 12.836 9.892 7.343 4.945 2.774	-7.147 -5.170 -0.707 4.680 7.668 8.697 7.780	3.470 2.510 0.343 -2.272 -3.723 -4.222 -3.777	-50.576 -57.044 -67.571 -52.074 -38.654 -26.033 -14.603	47.106 54.534 67.228 54.346 42.376 30.255 18.380	40.2 32.6 251.8 46.0 48.2 46.4 47.6	1,893.7 1,777.8 16,928.0 2,499.9 2,042.5 1,403.8 874.9	11.1 18.6 31.3 18.4 6.4 -5.7 -17.6
12 11 10	0.280 0.170 0.170	-5.554 -4.504 -2.904	-1.555 -0.766 -0.494	-9.11 -13.54 -17.51	-2.551 -2.302 -2.977	1.219 0.453 -0.040	5.229 2.927 -0.050	-2.538 -1.421 0	-6.417 -2.387 0	8.956 3.808 0	36.6 42.6	327.8 162.2 0	-27.0 -32.2 -36

* From Table 9, page A3.11

32,256.9

Page A15.27 Shear Flow in Closed Thin-Wall Sections

Figure A15-73

Bruhn Errata

Figure A15-74

Figure A15-75

Figure A15-76

Page A16.3 Rectangular Plates Under Various Loadings

First Column

You may wish to add notes that stress = p R / 2 t is the Longitudinal Stress and p R / t is the Hoop Stress.

Thanks to Jim Baldwin.

Page A17.4 Rectangular Plates Under Various Loadings

Table A17.1

For the Roark reference, the pages are 458-476 in the 6th edition.

Thanks to Jim Baldwin.

Page A17.6 Membrane Stress and Deflection Coefficients

TABLE A17.2 Membrane Stress and Deflection Coefficients									
a / b	1.0	1.5	2.0	2.5	3.0	4.0	5.0		
n ₁	0.318	0.228	0.160	0.125	0.100	0.068	0.052		
n ₂	0.411	0.370	0.336	0.304	0.272	0.23	0.205		

Coefficient n_2 for a/b = 1.0 should be 0.411 instead of 0.356. Reference NACA TM-965.

NACA TM-965 Rectangular Shell Plating Under Uniformly Distributed Hydrostatic Pressure

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094451_1993094451.pdf

Thanks to SparWeb on the www.eng-tips.com website.

Page A17.7 Large Deflection in Plates

Figure A17.3 on page A17.3 "a" is the long side

Figure A17.5 on page A17.5 "a" is the short side

Equation (20) is probably incorrect.

$$q = \frac{1}{\alpha} \frac{E t^3}{a^4 \left(\frac{b}{a}\right)^4} w_{\text{max}} + \frac{1}{n_1^3} \left(\frac{E t}{a^4}\right) w_{\text{max}}^3$$

SparWeb suggests:

$$q = w_{\max}\left(\frac{E t^{3}}{a^{4}}\right) + w_{\max}^{3}\left(\frac{E t}{n_{1}^{3} b^{4}}\right)$$

Equation (21) is probably incorrect:

$$\frac{q}{E}\frac{a}{t^4} = \frac{1}{\alpha}\left(\frac{w_{\text{max}}}{t}\right)^2\left(\frac{a}{b}\right)^4 + \frac{1}{n_1^3}\left(\frac{w_{\text{max}}}{t}\right)^3$$

See Theory of Plates and Shells by Stephen Timoshenko.

Thanks to SparWeb on the www.eng-tips.com website.

Page A18.1 Combined Bending and Compression of Columns

```
Column 1, Figure A18.1
```

Add x 🗕

Column 2, Equation 4a

$$\left(0 \leq z \ 1 - a \right)$$

should be

 $0 \leq z \leq (1 - a)$

Thanks to Dr. Howard W. Smith.

Page A18.5 The Failure of Columns by Compression

Column	1,	Just	above	Equation	10	
--------	----	------	-------	----------	----	--

"Fournier se	ries"
--------------	-------

should be

"Fourier series"

Thanks to Dr. Howard W. Smith.

Page A18.10 Pure Bending of Thin Plates

Column 2, Figure 2b, Lower M_y

$M_{\rm X}$ Thanks to D1. Howard W. Sh	My	should be	M _x	Thanks to Dr. Howard W. Smit
--	----	-----------	----------------	------------------------------

Page A18.11 Pure Bending of Thin Plates

Column 2	, Equation 4a		
Ez	should be	Ez	2 places
Column 2	, Equation 4b		
σz	should be	σ_y	
Ez	should be	E_y	2 places
Just abov	e Equation 5a		
M _x dy	should be	M _y dy	
M _y dx	should be	M _x dx	

Just below Equation 5b

$$D = \frac{E h^2}{12 (1 - v^2)}$$
 should be $D = \frac{E h^3}{12 (1 - v^2)}$ Thanks to Dr. Howard W. Smith.

Page A19.6 Three Flange Single Cell Wing

Column 1

 $V_x = 700 \text{ lb}$ should be $V_x = -700 \text{ lb}$ Thanks to Dr. Howard W. Smith.

Page A19.7 Three Flange Single Cell Wing

Column 1 Table

y x z should be $\Delta y \Delta x \Delta z$ Thanks to Dr. Howard W. Smith.

Page A19.8 Analysis of Wing Structures

Cessna Aircraft Model 180 should be Cessna Aircraft Model 182 Thanks to Dr. Howard W. Smith.

Page A19.17 Bending and Shear Stress Analysis – Tapered Multiple Stringer Wing

Column 1, For Station 20 ...

 $K_{1} = -50 / (230.3 \times 10.30 - 50^{2}) = -50 / 235500 = -.0002125$ should be $K_{1} = -50 / [230.3 (1,030)] = -50 / 234,709 = -.0002130$ $K_{2} = -1030 / 235500 = .004378$ should be $K_{2} = 1,030 / 235,500 = -.004374$

Column 2,

$$\sigma_{b} = -\left[0.0098 \, x - 285000 - \left(-.0002125 \, x \, 1300000 \right) \right] x - \left[0.004378 \, x \, 1,300,000 - \left(-.0002125 \, x \, -285000 \right) \right] z$$

should be

$$\sigma_b = -\left[0.000978 \left(-285,000 \right) - \left(-.0002130 \right) 1,300,000 \right] x - \left[0.004374 \left(1,300,000 \right) - \left(-.0002130 \right) \left(-285,000 \right) \right] z - \left[-.0002130 \right) z - \left[-.0002130 \right] z - \left[-.00$$

 $\sigma_b = 3.3 \ x - 5639 \ z$ should be $\sigma_b = 1.83 \ x - 5,625.5 \ z$

Stresses at Station 47.5

$$K_1 = 35.4 / (157.4 \times 700 - 35.4^2) = -35.4 / 108950 = -.000324$$
 should be
 $K_1 = -35.4 / [157.4 (700) - 35.4^2] = -35.4 / 108,927 = -.000325$

 $K_2 = 700 / 108950 = .00643$ should be $K_2 = 700 / 108,927 = 0.006426$

 $K_3 = 157.4 / 108750 = .001447$ should be $K_3 = 157.4 / 108,927 = 0.001445$

$$\sigma_b = -\left[\begin{array}{c} .001447 \ x - 215000 \ - \ \left(\begin{array}{c} -.000324 \ x \ 1,000,000 \ \end{array} \right) \right] \ x \ - \ \left[\begin{array}{c} .00643 \ x \ 1,000,000 \ - \ \left(\begin{array}{c} -.00324 \ x \ - 215000 \ \end{array} \right) \right] \ z$$

should be

 $\sigma_b = -\left[\ 0.001445 \left(\ -215,000 \ \right) - \left(\ -.000325 \ \right) \ 1,000,000 \ \right] \ x - \left[\ 0.006426 \left(\ 1,000,000 \ \right) - \left(\ -.000325 \ \right) \ \left(\ -215,000 \ \right) \right] \ z$

 $\sigma_b = -14.5 \ x \ - \ 6360 \ z$ should be $\sigma_b = -14.3 \ x \ - \ 6,356 \ z$

Page A19.19 Analysis for Shear Stresses in Webs and Skin

Column 2 Moment of External Loads about the Center of Gravity of Station 20

$$\sum M_{cg} = 12000 \ x \ 33.3 - 2700 \ x \ 11.8 - 390000 = 41800 \ in.lb.$$

should be $\sum M_{cg} = 12,000 \ x \ 33.3 - 2,700 \ x \ 11.8 - 390,000 = -22,260 \ in - lb$

Page A20.5 Fuselage Analysis – Effective Cross Section

Table A20.1

	Table A20.1											
	Tr	ial No. 1	- Stringe	rs				Trial N	o. 2 - Str	ringers		
1	2	2a	3	4	5	6	7	8	9	10	11	12
Stringer No.	Area A	Area A	Arm z'	A z'	A z' ²	z	σ,	w	w t	A_{eff}	A _{eff} z	A z ²
2 4 6 8 10 12 13 14 15 16 17	0.120 0.120 0.120 0.120 0.120 0.120 0.224 0.120 0.224 0.120 0.120 0.160	0.151 0.151 0.151 0.151 0.151 0.120 0.224 0.120 0.224 0.120 0.224 0.120	24.2 22.0 18.2 13.3 6.9 0 -3.2 -6.9 -10.1 -13.3 -15.8	3.65 3.32 2.74 2.00 1.04 0 -0.72 -0.83 -2.26 -1.60 -2.53	88.27 72.95 49.92 26.66 7.18 0 2.29 5.71 22.85 21.23 39.94	27.55 25.35 21.55 16.65 10.25 3.35 0.15 -3.55 -6.75 -9.95 -12.45	-29,925 -27,535 -23,408 -18,085 -11,134 -3,639	1.009 1.052 1.141 1.298 1.655 2.894 Skin	0.032 0.034 0.037 0.042 0.053 0.093	0.152 0.154 0.157 0.162 0.173 0.213 0.224 0.120 0.224 0.120 0.160	4.196 3.896 3.373 2.690 1.773 0.712 0.034 -0.426 -1.512 -1.194 -1.992	115.59 98.75 72.69 44.78 18.17 2.39 0.01 1.51 10.21 11.88 24.80 2.80
18 19 20 21 22 23	0.120 0.160 0.120 0.160 0.120 0.088	0.120 0.160 0.120 0.160 0.120 0.088	-18.2 -20.3 -22.0 -23.7 -24.2 -24.9	-2.18 -3.25 -2.64 -3.79 -2.90 -2.19	39.75 65.93 58.08 89.87 70.28 54.56	-14.85 -16.95 -18.65 -20.35 -20.85 -21.55		in Tension		0.120 0.160 0.120 0.160 0.120 0.088	-1.782 -2.712 -2.238 -3.256 -2.502 -1.896	26.46 45.97 41.74 66.26 52.17 40.87
	Σ	2.49	Σ	-12.14	715.47				Σ	2.626	-2.838	674.2

Table A20.2

Trial No. 1 - Buckled Sheets										
1	2	3	4	5	6	7	8	9	10	11
Buckled Sheet	b'	t	r	σ_{cr}	σ,	к	A_{eff}	Arm z'	A z'	A z' ²
1 3 5 7 9 11	2.262 4.024 4.024 4.024 6.024 6.512	0.032 0.032 0.032 0.032 0.032 0.032	11 11 24 38 38 38	-8,989 -8,989 -4,120 -2,602 -2,602 -2,602	-31,900 -30,300 -26,000 -20,200 -12,900 -4,100	0.282 0.297 0.158 0.129 0.202 0.635	0.020 0.038 0.020 0.017 0.039 0.132	24.9 23.7 20.3 15.8 10.1 3.2	0.51 0.91 0.41 0.26 0.39 0.42	12.65 21.46 8.41 4.14 3.97 1.35
						Σ	0.267	Σ	2.91	51.97

Trial No. 2 - Buckled Sheets									
1	12	13	14	15	16	17	18		
Buckled Sheet	z	σ,	к	b'	a = K t b'	a z	a Z ²		
1 3 5 7 9 11	28.25 27.05 23.65 19.15 13.45 6.55	-30,685 -29,382 -25,689 -20,801 -14,609 -7,115	0.293 0.306 0.160 0.125 0.178 0.366	2.252 3.981 3.911 3.789 5.556 4.930	0.021 0.039 0.020 0.015 0.032 0.058	0.60 1.05 0.47 0.29 0.43 0.38	16.85 28.52 11.23 5.56 5.73 2.48		
				Σ	0.185	3.22	70.36		

.

Page A20.6 Fuselage Analysis – Effective Cross Section

Table A20.3

Table A20.3								
1	1 2		4					
Element No.	а	z	a z					
1 2 3 4 5 6 7 8 9 10 11 12	0.021 0.153 0.039 0.154 0.020 0.157 0.015 0.162 0.032 0.174 0.058 0.216	28.250 27.367 27.050 25.167 23.650 21.367 19.150 16.467 13.450 10.067 6.550 3.167	0.604 4.178 1.068 3.877 0.481 3.354 0.294 2.669 0.431 1.750 0.382 0.684					
		Σ	19.77					

Stress in Stringers						
1	2	3				
Stringer Ref.	z	σ,				
2 4 6 8 10 12 13 14 15 16 17 18 19 20 21 22 23	27.367 25.167 21.367 16.467 10.067 3.167 -0.033 -3.733 -6.933 -10.133 -12.633 -15.033 -17.133 -18.833 -20.533 -21.033 -21.733	-29,285 -26,931 -22,865 -17,621 -10,773 -3,389 35 3,994 7,419 10,843 13,518 16,086 18,333 20,153 21,972 22,507 23,256				

From my calculations:

Trial No.	ΣΑ	Σ A z'	Z _{bar}	I _{NA}
1	5 513	-18 468	-3 3501	1 473 03
2	5.612	-17.704	-3.2142	1,489.19
3	5.636	-17.517	-3.1811	1,492.59
4	5.636	-17.467	-3.1722	1,494.38
5	5.637	-17.448	-3.1688	1,494.95
6	5.637	-17.442	-3.1677	1,495.13
7	5.637	-17.440	-3.1673	1,495.19
8	5.637	-17.439	-3.1672	1,495.21
9	5.637	-17.439	-3.1672	1,495.22
10	5.637	-17.439	-3.1671	1,495.22

Page A20.8 Fuselage Section, Ultimate Bending Strength

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures pages A20.7-A20.8

Table A20.4, Column 7, Stringer No. 8

Arm $Z^1 = 10.0$ should be 0.0

Column 2, Calculation of Ultimate Resisting Moment

Moment $M_x = (36500 \ x \ 3252) / 35.7 + 0.7$

should be
$$M_x = \frac{36,500(3,252)}{(35.7+0.7)}$$

Table A20.4

	Table A20.4											
1	2	3	4	5	6	7	8	9	10	11	12	13
Str	inger	Stringer Area	Linear Stress	Eff. Skin	Total Area	Arm Z ¹	Strain ɛ	True Stress	к	KA	KAZ ¹	K A Z ²
Number	Туре	(in²)	σ_{b}	Area	(in²)	(in)	(in/in)	(psi)				
1	S ₁	0.135	-36,500	0.033	0.168	35.7	-0.006	-36,500	1.00	0.168	5.99	213.7
2	S ₁	0.135	-34,700	0.034	0.169	33.8	-0.0057	-36,500	1.05	0.177	5.99	202.5
3	S ₂	0.180	-31,000	0.035	0.215	30.3	-0.0051	-39,100	1.26	0.272	8.23	249.5
4	S ₁	0.135	-26,600	0.038	0.173	26.0	-0.0048	-36,000	1.35	0.235	6.10	158.5
5	S ₃	0.080	-20,500	0.044	0.124	20.1	-0.0034	-31,500	1.54	0.190	3.82	76.7
6	S ₃	0.080	-13,400	0.054	0.134	13.7	-0.0023	-24,000	1.79	0.240	3.29	45.0
7	S ₃	0.080	-7,150	0.074	0.154	7.0	-0.0012	-12,500	1.75	0.269	1.88	13.2
8	S ₃	0.080	0	0	0.080	0	0	0	1.00	0.080	0	0
9	S ₃	0.080	6,130	0.216	0.296	-6.0	0.0010	10,000	1.63	0.483	-2.90	17.4
10	S ₃	0.080	12,280	0.216	0.296	-12.0	0.0200	20,500	1.67	0.494	-5.93	71.2
11	S ₃	0.080	16,800	0.216	0.296	-16.5	0.0028	30,000	1.79	0.529	-8.72	143.9
12	S ₃	0.080	20,400	0.216	0.296	-20.0	0.0034	35,000	1.72	0.508	-10.16	203.1
13	S ₃	0.080	21,700	0.216	0.296	-21.2	0.0036	38,000	1.75	0.518	-10.99	233.0
				Σ	2.696			Fig A20.5	Σ	4.162	-3.40	1,627.7

See Figure C11.43 on page C11.38 for additional stringer information.

For stringers in tension 6.75 inches apart, the effective skin area, w t = 0.032 inch (6.75 inch) = 0.216 in^2

For example, the effective skin width for Stringer 1 in compression:

$$w = 1.9 \ t \ \sqrt{\frac{E}{\sigma_{ST}}} = 1.9 \ (\ 0.032 \ inch \) \sqrt{\frac{10,300,000 \ psi}{36,500 \ psi}} = 1.021 \ inch$$

Effective Skin Area A = 1.021 inch (0.032 inch) = 0.0327 in²

Page A20.9 Shear Flow Analysis for Tapered Fuselage – Beam Properties at One Section

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures pages A20.9-A20.10

Table A20.5

Table A20.5										
1	2	3	4	5	6	7	8	9		
Stringer No.	Arm, z Sta 0	Area A	σ,	Ρ _x Sta 0	dz / dx	dy / dx	Pz	Py		
1 2 3 4 5 6 7 8 9	15.00 13.86 10.61 5.74 0.00 -5.74 -10.61 -13.86 -15.00	0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10	-25,000 -23,097 -17,678 -9,567 0 9,567 17,678 23,097 25,000	-1,250 -2,310 -1,768 -957 0 957 1,768 2,310 1,250	-0.0333 -0.0308 -0.0236 -0.0128 0 0.0128 0.0236 0.0308 0.0333	0.0000 -0.0128 -0.0308 -0.0333 -0.0308 -0.0236 -0.0128 0	-41.67 -71.13 -41.67 -12.20 0 -12.20 -41.67 -71.13 -41.67	0.00 -29.46 -41.67 -29.46 0 29.46 41.67 29.46 0.00		
							-333.33	0		

Properties

Properties									
10 11 12 13 14 15									
Arm, y Sta 0	Arm, y Sta 150	Arm, z Sta 0	Arm, z Sta 150	dz / dx	dy / dx				
0.00 5.74 10.61 13.86 15.00 -13.86 -10.61 -5.74 0	0.00 3.83 7.07 9.24 10.00 -9.24 -7.07 -3.83 0	15.00 13.86 10.61 5.74 0 -5.74 -10.61 -13.86 -15.00	10.00 9.24 7.07 3.83 0 -3.83 -7.07 -9.24 -10.00	-0.0333 -0.0308 -0.0236 -0.0128 0 0.0128 0.0236 0.0308 0.0333	0.0000 -0.0128 -0.0236 -0.0308 -0.0333 -0.0308 -0.0236 -0.0128 0				

Bruhn Errata

Shear Flow

See Figure A20.7 page A20.10

Stringer No.	q flexural	q _{internal}	q _{total}
1-2 2-3 3-4 4-5 5-6 6-7	-5.56 -15.82 -23.68 -27.93 -27.93 -23.68	-7.07 -7.07 -7.07 -7.07 -7.07 -7.07 -7.07	-1.52 8.75 16.60 20.86 20.86 16.60
7-8 8-9	-15.82 -5.56	-7.07 -7.07	8.75 -1.52

Stringer No.	q _{flexural}	q _{internal}	q _{total}		
9-10	5.56	-7.07	-12.63		
10-11	15.82	-7.07	-22.89		
11-12	23.68	-7.07	-30.75		
12-13	27.93	-7.07	-35.00		
13-14	27.93	-7.07	-35.00		
14-15	23.68	-7.07	-30.75		
15-16	15.82	-7.07	-22.89		
16-1	5.56	-7.07	-12.63		

Page A20.10 Tapered Circular Fuselage with Asymmetrical Stringer Areas – Delta P Method

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures pages A20.10-A20.15

Table A20.6

	Table A20.6											
1	1 2 3 4 5 6 7 8 9 10 11 12 13											13
Stringer No.	Area Sta 0	Area Sta 30	Arm, z Sta 0	Arm, z Sta 30	σ _▶ Sta 0	σ _ь Sta 30	P _x Sta 0	P _x Sta 30	<u>ΔP</u> 30	к	<u>_AP К</u> 30	q
1 2 3 4 5 6 7 8 9	0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10	15.00 13.86 10.61 5.74 0.00 -5.74 -10.61 -13.86 -15.00	14 12.93 9.90 5.36 0.00 -5.36 -9.90 -12.93 -14	-25,000 -23,097 -17,678 -9,567 0 9,567 17,678 23,097 25,000	-21,429 -19,797 -15,152 -8,200 0 8,200 15,152 19,797 21,429	-1,250 -2,310 -1,768 -957 0 957 1,768 2,310 1,250	-1,071 -1,980 -1,515 -820 0 820 1,515 1,980 1,071	5.95 11.00 8.42 4.56 0 -4.56 -8.42 -11.00 -5.95	0.935 0.935 0.935 0.935 0 0.935 0.935 0.935 0.935	5.57 10.29 7.87 4.26 0 -4.26 -7.87 -10.29 -5.57	5.57 15.86 23.73 27.99 27.99 23.73 15.86

Table A20.7

	Table A20.7												
	Section Properties at Station 0									tal String	er Loads	at Statio	n 0
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Stringer Ref.	Area A	Arm z'	Arm y'	A z'	A z' ²	A y'	A y' ²	A z' y'	z	У	σ,	σ。	P _s
a b c d e f g h I j	0.60 0.10 0.10 0.80 0.80 0.20 0.20 0.20 0.20 0.30	10.50 18.98 22.50 18.98 10.50 -10.50 -18.98 -22.50 -18.98 -10.50	-12.00 -8.48 0.00 8.48 12.00 12.00 8.48 0.00 -8.48 -12.00	6.30 1.90 2.25 1.90 8.40 -3.80 -4.50 -3.80 -3.15	66.15 36.02 50.63 36.02 88.20 72.05 101.25 72.05 33.08	-7.20 -0.85 0.00 0.85 9.60 9.60 1.70 0.00 -1.70 -3.60	86.40 7.19 0.00 7.19 115.20 115.20 14.38 0.00 14.38 43.20	-75.60 -16.10 0.00 16.10 100.80 -100.80 -32.19 0.00 32.19 37.80	11.352 19.832 23.352 19.832 11.352 -9.648 -18.128 -21.648 -18.128 -9.648	-14.471 -10.951 -2.471 6.009 9.529 9.529 6.009 -2.471 -10.951 -14.471	-15,111 -21,996 -22,697 -16,785 -7,736 11,992 18,877 19,578 13,666 4,618	-441.2 -441.2 -441.2 -441.2 -441.2 -441.2 -441.2 -441.2 -441.2 -441.2	-9,331.4 -2,243.7 -2,313.8 -1,722.6 -6,542.0 9,241.0 3,687.2 3,827.5 2,644.9 1,252.9
	3.40			-2.90	643.64	8.40	403.15	-37.80					-1,500.0

Table A20.8

	Table A20.8												
	Section Properties at Station 30									Total Stringer Loads at Station 30			
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Stringer Ref.	Area A	Arm z'	Arm y'	A z'	A z' ²	А у'	A y' ²	A z' y'	z	У	σ	σ。	P s
a b c d e f g h I j	0.50 0.10 0.10 0.66 0.66 0.20 0.20 0.20 0.20 0.20	9.80 17.72 21.00 17.72 9.80 -9.80 -17.72 -21.00 -17.72 -9.80	-11.20 -7.92 0.00 7.92 11.20 11.20 7.92 0.00 -7.92 -11.20	4.90 1.77 2.10 1.77 6.47 -6.47 -3.54 -4.20 -3.54 -2.55	48.02 31.40 44.10 31.40 63.39 63.39 62.80 88.20 62.80 24.97	-5.60 -0.79 0.00 0.79 7.39 7.39 1.58 0.00 -1.58 -2.91	62.72 6.27 0.00 6.27 82.79 82.79 12.55 0.00 12.55 32.61	-54.88 -14.03 0.00 14.03 72.44 -72.44 -28.07 0.00 28.07 28.54	10.905 18.825 22.105 18.825 10.905 -8.695 -16.615 -19.895 -16.615 -8.695	-13.305 -10.025 -2.105 5.815 9.095 5.815 -2.105 -10.025 -13.305	-14,840 -21,146 -21,490 -15,672 -7,100 17,616 17,960 12,142 3,570	-503.4 -503.4 -503.4 -503.4 -503.4 -503.4 -503.4 -503.4 -503.4	-7,671.8 -2,164.9 -2,199.3 -1,617.6 -5,018.0 7,132.7 3,422.6 3,491.4 2,327.8 797.3
	2.98			-3.29	520.46	6.27	298.55	-26.34					-1,500.0

Table A20.9

	Table A20.9 Shear Flow Calculations											
1	2	3	4	5	6	7	8	9				
Stringer Ref.	P _x STA 0	P _x STA 30	<u>▲P</u> * 30	q	m	m q	q ₁	qr				
a b c d e f g h I i a	-9,331.4 -2,243.7 -2,313.8 -1,722.6 -6,542.0 9,241.0 3,687.2 3,827.5 2,644.9 1,252.9	-7,671.8 -2,164.9 -2,199.3 -1,617.6 -5,018.0 7,132.7 3,422.6 3,491.4 2,327.8 797.3	55.32 2.63 3.82 3.50 50.80 -70.28 -8.82 -11.20 -10.57 -15.19	55.32 57.94 61.76 65.26 116.06 45.79 36.96 25.76 15.19 0	150.04 202.46 150.04 252.00 150.04 202.46 202.46 150.04 252.00	8,300.0 11,731.5 12,504.2 9,791.9 29,247.6 6,869.6 7,483.5 5,215.2 2,278.8 0	-52.47 -52.47 -52.47 -52.47 -52.47 -52.47 -52.47 -52.47 -52.47 -52.47	2.85 5.48 9.29 12.79 63.59 -6.68 -15.50 -26.71 -37.28 -52.47				
	-1 ,500.0	-1,500.0		Σ	1,914.0	93,422.3						

Table A20.10

Та	Table A20.10 Moments Due to Components of Stringer Loads											
1	2	3	4	5	6	7	8					
Stringer Ref.	P _x STA 0	dy∕dx	Ру	Мо	dz / dx	Pz	Мо					
a b c d e f g h I j	-9,331.4 -2,243.7 -2,313.8 -1,722.6 -6,542.0 9,241.0 3,687.2 3,827.5 2,644.9 1,252.9	0.0267 0.0189 -0.0189 -0.0267 -0.0267 -0.0189 0 0.0189 0.0267	248.8 42.3 0 32.5 174.5 246.4 69.5 0 49.9 33.4	2,612.8 803.0 -616.5 -1,831.7 -2,587.5 -1,319.6 0 946.6 350.8	-0.0233 -0.0422 -0.0500 -0.0422 -0.0233 0.0233 0.0422 0.0500 0.0422 0.0233	217.7 94.7 115.7 72.7 152.6 155.6 191.4 111.6 29.2	-2,612.8 -802.7 0 616.28 1831.75 2587.47 1319.17 0 -946.27 -350.81					
	-1,500.0		Σ	-1,642.1		Σ	1,642.1					

Comparison

Beam	Properties	at One	Section
------	------------	--------	---------

Stringer No.	q _{flexural}	q _{internal}	q _{total}
1-2	-5.56	-7.07	-1.52
2-3	-15.82	-7.07	8.75
3-4	-23.68	-7.07	16.60
4-5	-27.93	-7.07	20.86
5-6	-27.93	-7.07	20.86
6-7	-23.68	-7.07	16.60
7-8	-15.82	-7.07	8.75
8-9	-5.56	-7.07	-1.52
9-10	5.56	-7.07	-12.63
10-11	15.82	-7.07	-22.89
11-12	23.68	-7.07	-30.75
12-13	27.93	-7.07	-35.00
13-14	27.93	-7.07	-35.00
14-15	23.68	-7.07	-30.75
15-16	15.82	-7.07	-22.89
16-1	5.56	-7.07	-12.63

Stringer No.	q _{flexural}	q _{internal}	q _{total}
No.	q flexural	qinternal -7.07	q total
1-2	5.57		-1.51
2-3	15.86		8.78
3-4	23.73		16.66
4-5	27.99		20.92
5-6	27.99		20.92
6-7	23.73		16.66
7-8	15.86		8.78
8-9	5.57		-1.51
9-10	5.57		-12.64
10-11	15.86		-22.93
11-12	23.73		-30.80
12-13	27.99		-35.06
13-14	27.99	-7.07	-35.06
14-15	23.73	-7.07	-30.80
15-16	15.86	-7.07	-22.93
16-1	5.57	-7.07	-12.64

Difference

Stringer No.	q _{total}	
1-2	0.01	
2-3	0.03	
3-4	0.05	
4-5	0.06	
5-6	0.06	
6-7	0.05	
7-8	0.03	
8-9	0.01	
9-10	-0.01	
10-11	-0.03	
11-12	-0.05	
12-13	-0.06	
13-14	-0.06	
14-15	-0.05	
15-16	-0.03	
16-1	-0.01	

Bruhn Errata

Page A22.7 Shear Lag Analysis of Box Beams

$$\left[\alpha_{rs}^{-1}\right] = 10^{-5} \begin{bmatrix} 3.285 & -1.505 & -0.656 & -0.183 \\ -1.505 & 4.219 & -1.000 & -0.279 \\ -0.656 & -1.000 & 4.687 & -0.495 \\ -0.183 & -0.279 & -0.495 & 5.519 \end{bmatrix}$$

should be

$$\left[\alpha_{rs}^{-1}\right] = 10^{-5} \begin{bmatrix} 3.286 & -1.506 & -0.656 & -0.183 \\ -1.506 & 4.219 & -1.000 & -0.279 \\ -0.656 & -1.000 & 4.686 & -0.494 \\ -0.183 & -0.279 & 0.494 & 5.518 \end{bmatrix}$$

ו

$$\begin{bmatrix} G_{im} \end{bmatrix} = \begin{bmatrix} g_{im} \end{bmatrix} - \begin{bmatrix} g_{ir} \end{bmatrix} \begin{bmatrix} \alpha_{rs}^{-1} \end{bmatrix} \begin{bmatrix} \alpha_{rs} \end{bmatrix}$$
Page A22.13 Stresses in Inner Bays

$\left(q_{8} \right)$.1006	.0295	.00676	00676	
q_9		.0791	0208	01753	0095	
q_{10}		.0013	0411	.00401	.0230	$ $ I_1 D
$\begin{cases} q_{11} \end{cases}$	} =	.0422	.1135	00675	.00675	$\left \right\rangle \left \left\langle 1_2 \right\rangle \right\rangle \left \left\langle 1_2 \right\rangle \right\rangle \right $
q_{19}		.2409	.2409	.00676	00676	q_{12}
q_{21}		3.087	.964	9355	3444	$\left[\left(\begin{array}{c} q_{14} \end{array} \right) \right]$
$\left(q_{22} \right)$		- 2.379	-1.473	2284	.3625	

should be

Page A23.11 Single Bay Pinned Truss

Table A23.3, AE/L = 1.607×10^6 should be 1.06066×10^6 if the areas are to be the same as Problem #1 on page A8.7 for E = 30E6 psi. I use cross-sectional areas, $A_{ab} = 1.0 \text{ in}^2$, $A_{bd} = 1.0 \text{ in}^2$, $A_{dc} = 1.0 \text{ in}^2$, $A_{ca} = 1.0 \text{ in}^2$, $A_{cb} = 2.0 \text{ in}^2$ and $A_{ad} = 1.5 \text{ in}^2$.

For E = 10E6 psi. use cross-sectional areas, A_{ab} = 3.0 in² , A_{bd} = 3.0 in² , A_{dc} = 3.0 in² , A_{ca} = 3.0 in² , A_{ca} = 3.0 in² , A_{cb} = 6.0 in² and A_{ad} = 4.5 in² . These will yield the same A E / L.

Method of Displacements – Stiffness Method

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures, pages A23.11 - A23.12

Gaussian Elimination

							4 70744	0 70711	1	0	0 7074
			$C^{(l)}$	k-1)			-0.70711	1.70711	-1	0	-0.7071
	C	$C_{ij}^{(k)} = C_{ij}^{(l)}$	$\frac{C_{ik}}{C_{ik}}$	$\frac{1}{k-1} C_{1j}^{(k-1)}$	1)		-1	0	1.5303	0.5303	0
			C_{kk}	, .			0	0	0.5303	1.5303	0
							-0.70711	0.70711	0	0	1.7071 [/]
I	k = 1							,	After Step 1		
	C ₁₁ ⁽¹⁾	$C_{12}^{(1)}$	C ₁₃ ⁽¹⁾	C ₁₄ ⁽¹⁾	$C_{15}^{(1)}$		1.70711	-0.70711	-1	0	-0.7071
	0	1.414215	-0.41421	0	0.414215		0	1.414215	-0.41421	0	0.41421
	0	-0.41421	0.944515	0.5303	-0.41421	=	0	-0.41421	0.944515	0.5303	-0.4142
	0	0	0.5303	1.5303	0		0	0	0.5303	1.5303	0
	0	0.414215	-0.41421	0	1.414215		0	0.414215	-0.41421	0	1.41421
	k = 2								After Step 2	2	
	C ₁₁ ⁽²⁾	C ₁₂ ⁽²⁾	C ₁₃ ⁽²⁾	C ₁₄ ⁽²⁾	C ₁₅ ⁽²⁾		1.70711	-0.70711	-1	0	-0.7071
	$C_{21}^{(2)}$	C ₂₂ ⁽²⁾	C ₂₃ ⁽²⁾	C ₂₄ ⁽²⁾	C ₂₅ ⁽²⁾		0	1.414215	-0.41421	0	0.41421
	0	0	0.823194	0.5303	-0.29289	=	0	0	0.82319	0.53030	-0.2928
	0	0	0.5303	1.5303	0		0	0	0.53030	1.53030	0
	0	0	-0.29289	0	1.292894		0	0	-0.29289	0	1.29289
I	k = 3							,	After Step 3	3	
	C ₁₁ ⁽³⁾	$C_{12}^{(3)}$	C ₁₃ ⁽³⁾	C ₁₄ ⁽³⁾	$C_{15}^{(3)}$		1.70711	-0.70711	-1	0	-0.7071
	$C_{21}^{(3)}$	C ₂₂ ⁽³⁾	$C_{23}^{(3)}$	$C_{24}^{(3)}$	C ₂₅ ⁽³⁾		0	1.41421	-0.41421	0	0.4142
	$C_{31}^{(3)}$	$C_{32}^{(3)}$	C ₃₃ ⁽³⁾	C ₃₄ ⁽³⁾	C ₃₅ ⁽³⁾	=	0	0	0.82319	0.53030	-0.2928
	0	0	0	1.188682	0.188682		0	0	0	1.18868	0.1886
	0	0	0	0.188682	1.188682		0	0	0	0.18868	1.1886
I	k = 4							,	After Step 4	Ļ	
	C ⁽⁴⁾		1 70711	0 70711	1	0	0 7071				
	C_{11}	$C_{12}^{(4)}$	$C_{13}^{(4)}$	$C_{14}^{(4)}$	$C_{15}^{(4)}$		0	1 /1/21	-0 /1/21	0	0.1011
	C_{21}	C ₂₂	$C_{23}^{(4)}$	$C_{24}^{(4)}$	$C_{25}^{(4)}$	_		0	0.82310	0 53030	-0 2028
	C ⁽⁴⁾	Cus ⁽⁴⁾	Cus ⁽⁴⁾	C_{34}	Cus ⁽⁴⁾			0	0.02018	1 18868	0.1886
	0	0	0	0	1.158732		0	0	0	0	1.1587
		St	iffness Mat	rix		D	isplacemer	its	Forces		
		. =			0 20244						
1.	./U/11	-0.70711	-1	0	-0.70711		u ₁				
	0	1.414215	-0.41421	0	0.414215		u ₂				
	0	0	0.823194	0.5303	-0.29289		ζ u ₃	> =	$\left\{ \begin{array}{c} F_3 \\ F_3 \end{array} \right\}$	•	
	0	0	0	1.188682	0.188682		u ₄				
	0	0	0	0	1.158732		U ₅				

Page 3

	(1)	(1)	(1)	(1)	(1)		F ₁	F_2	F ₃	F_4	F ₅	
-	C ₁₆ ⁽¹⁾	C ₁₇ ⁽¹⁾	C ₁₈ ⁽¹⁾	C ₁₉ ⁽¹⁾	C ₁₀ (1)		1	0	0	0	0	
	0.41421	1	0	0	0	_	0.41421	1	0	0	0	50
	0.56579	0	0	1	0	-	0.56579	0	0	1	0	Ja
(0.414215	0	0	0	1		0.41421	0	0	0	1	
							,					
							F1	F ₂	F ₃	F_4	F ₅	
	C ₁₆ ⁽²⁾	C ₁₇ ⁽²⁾	C ₁₈ ⁽²⁾	C ₁₉ ⁽²⁾	C ₁₀ ⁽²⁾		1	0	0	0	0	
	C ₂₆ ⁽²⁾	C ₂₇ ⁽²⁾	C ₂₈ ⁽²⁾	C ₂₉ ⁽²⁾	C ₂₀ ⁽²⁾		0.41421	1	0	0	0	
	0.70711	0.29289	1	0	0	=	0.70711	0.29289	1	0	0	5b
	0	0	0	1	0		0	0	0	1	0	
L	0.29289	-0.29289	0		1		0.29289	-0.29289	0	0	.]	
							F ₁	F ₂	F ₃	F_4	F_5	
	C ₁₆ ⁽³⁾	C ₁₇ ⁽³⁾	C ₁₈ ⁽³⁾	C ₁₉ ⁽³⁾	C ₁₀ ⁽³⁾		1	0	0	0	0	
	C ₂₆ ⁽³⁾	$C_{27}^{(3)}$	C ₂₈ ⁽³⁾	C ₂₉ ⁽³⁾	C ₂₀ ⁽³⁾		0.41421	1	0	0	0	
	C ₃₆ ⁽³⁾	C ₃₇ ⁽³⁾	C ₃₈ ⁽³⁾	C ₃₉ ⁽³⁾	C ₃₀ ⁽³⁾	=	0.70711	0.29289	1	0	0	5c
	-0.45552	-0.18868	-0.64420	1	0		-0.45552	-0.18868	-0.64420	1	0	
	0.54448	-0.18868	0.35580	0	1		0.54448	-0.18868	0.35580	0	1	
							F₁	F₂	F₂	F₄	F۶	
	$C_{16}^{(4)}$	$C_{17}^{(4)}$	$C_{10}^{(4)}$	$C_{10}^{(4)}$	$C_{10}^{(4)}$		1	0	0	0	0	
	C ₂₆ ⁽⁴⁾	$C_{27}^{(4)}$	$C_{20}^{(4)}$	$C_{20}^{(4)}$	$C_{20}^{(4)}$		0 41421	1		0	0	
	$C_{26}^{(4)}$	$C_{27}^{(4)}$	C ₂₀ ⁽⁴⁾	$C_{29}^{(4)}$	$C_{20}^{(4)}$	=	0 70711	0 29289	1	0	0	5d
	Cuc ⁽⁴⁾	$C_{47}^{(4)}$	Cuo ⁽⁴⁾	C ⁽⁴⁾	$C_{40}^{(4)}$		-0.45552	-0 18868	-0 64420	1	0	0u
Г	0.61679	-0.15873	0.45806	-0.15873	1		0.61679	-0.15873	0.45806	-0.15873	1	
							1					
_		St	iffness Mat	rix			F ₁	F ₂	F ₃	F_4	F_5	
Г	1.70711	St -0.70711	iffness Mat -1	rix 0	-0.70711	(u ₁)	F ₁	F ₂	F ₃ 0	F ₄	F ₅	
Γ	1.70711 0	St -0.70711 1.414215	iffness Mat -1 -0.41421	rix 0 0	-0.70711 0.414215	$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$	F ₁ 1 0.41421	F ₂ 0 1	F ₃ 0 0	F ₄ 0 0	F 5 0 0	
ſ	1.70711 0 0	St -0.70711 1.414215 0	iffness Mat -1 -0.41421 0.823194	rix 0 0 0.5303	-0.70711 0.414215 -0.29289	$\left\{ \begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array} \right\} =$	F ₁ 1 0.41421 0.70711	F ₂ 0 1 0.29289	F ₃ 0 0 1	F ₄ 0 0 0	F ₅ 0 0 0	
ſ	1.70711 0 0 0	-0.70711 1.414215 0 0	iffness Mat -1 -0.41421 0.823194 0	rix 0 0.5303 1.188682	-0.70711 0.414215 -0.29289 0.188682	$ \left\{\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \end{array}\right\} = $	F ₁ 0.41421 0.70711 -0.45552	F ₂ 0 1 0.29289 -0.18868	F ₃ 0 1 -0.64420	F ₄ 0 0 0 1	F5 0 0 0 0	
	1.70711 0 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0	rix 0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732	$ \left\{\begin{array}{c} u_1\\ u_2\\ u_3\\ u_4\\ u_5 \end{array}\right\} = $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806	F ₄ 0 0 1 -0.15873	F5 0 0 0 0 1	
	1.70711 0 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0	rix 0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732	$ \left\{ \begin{matrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{matrix} \right\} =$	F ₁ 1 0.41421 0.70711 -0.45552 0.61679	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806	F ₄ 0 0 1 -0.15873	F ₅ 0 0 0 1	
	1.70711 0 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0	rix 0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732	$ \left\{\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array}\right\} = $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806	F ₄ 0 0 1 -0.15873	F ₅ 0 0 0 1	E
	1.70711 0 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0	rix 0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732	$ \left\{\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array}\right\} = $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682	F ₄ 0 0 1 -0.15873	F ₅ 0 0 0 1 1 0.45806	F ₃
[1.70711 0 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0	rix 0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732	$ \left\{\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array}\right\} = $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5203	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 0.20280	F ₄ 0 0 1 -0.15873 u ₅ = u ₅ =	F ₅ 0 0 0 1 0.45806 -0.64420	F3 F3 F-
[1.70711 0 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0	rix 0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194		F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215	F ₄ 0 0 1 -0.15873 u ₅ = u ₅ = u ₅ = u ₅ =	F ₅ 0 0 0 1 0.45806 -0.64420 1 0	F3 F3 F3
[1.70711 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 0.70711	rix 0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421	$ \left\{ \begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array} \right\} = \left. \begin{array}{c} u_3 \\ u_4 \\ u_5 \end{array} \right\} $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 0.70711	F ₄ 0 0 1 -0.15873 u ₅ = u ₅ = u ₅ = u ₅ = u ₅ = u ₅ =	F ₅ 0 0 0 1 0.45806 -0.64420 1 0 0	F3 F3 F3 F3 5
	1.70711 0 0 0 0	St -0.70711 1.414215 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711	rix 0 0.5303 1.188682 0 u2 u2	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1	$ \left \begin{array}{c} \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array} \right) = \\ \begin{array}{c} u_3 \\ u_3 \\ u_3 \\ u_3 \\ u_3 \end{array} \right $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F ₂ 0 1 0.29289 -0.18868 -0.15873	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.70711	F₄ 0 0 1 -0.15873 u ₅ = u ₅ = u ₅ = u ₅ =	F ₅ 0 0 1 0.45806 -0.64420 1 0 0	F3 F3 F3 F3 F3 F3
	1.70711 0 0 0 1.70711	St -0.70711 1.414215 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne	rix 0 0.5303 1.188682 0 u2 u2 u2 ss Matrix	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1	$ \left(\begin{array}{c} u_1\\ u_2\\ u_3\\ u_4\\ u_5 \end{array}\right) = $ $ \left(\begin{array}{c} u_3\\ u_3\\ u_3\\ u_3\\ u_3 \end{array}\right) $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F ₂ 0 1 0.29289 -0.18868 -0.15873 U4 U4 U4 U4 U4 U4 E	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.70711 3 is the only	F ₄ 0 0 1 -0.15873 u ₅ = u ₅ = u ₅ = applied loa	F ₅ 0 0 1 1 0.45806 -0.64420 1 0 0	F ₃ F ₃ F ₃ F ₃ F ₃
	1.70711 0 0 0 1.70711 1.70711	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898	rix 0 0.5303 1.188682 0 u ₂ u ₂ u ₂ ss Matrix -0.38321	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230	$ \left \begin{array}{c} \left(\begin{array}{c} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \end{array} \right) = \\ \\ \begin{array}{c} u_{3} \\ u_{3} \\ u_{3} \\ u_{3} \end{array} \right \\ \\ \end{array} \right $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F ₂ 0 1 0.29289 -0.18868 -0.15873 u ₄ u ₄ u ₄ u ₄ u ₄	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.70711 3 is the only	F4 0 0 0 1 -0.15873	F ₅ 0 0 1 1 0.45806 -0.64420 1 0 0	F3 F3 F3 F3 F3 F3 F3
	1.70711 0 0 0 1.70711 0.58579 0	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580	rix 0 0.5303 1.188682 0 u ₂ u ₂ u ₂ ss Matrix -0.38321 -0.15873	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699	$ \left \begin{array}{c} \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array} \right) = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F ₂ 0 1 0.29289 -0.18868 -0.15873 U4 U4 U4 U4 U4 U4 F	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.70711 3 is the only Displac	F4 0 0 0 0 1 -0.15873	F ₅ 0 0 1 1 0.45806 -0.64420 1 0 0	F3 F3 F3 F3 F3 F3 F3
	1.70711 0 0 0 1.70711 1.70711 0.58579 0 0	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478	rix 0 0.5303 1.188682 0 u ₂ u ₂ u ₂ ss Matrix -0.38321 -0.15873 -0.54194 2.044194	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.39531 0.4020	$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} =$ $\begin{bmatrix} u_3 \\ u_3 \\ u_3 \\ u_3 \end{bmatrix}$	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F ₂ 0 1 0.29289 -0.18868 -0.15873 U4 U4 U4 U4 U4 U4 U4 F;	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.70711 3 is the only Displac	F_4 0 0 1 -0.15873 $u_5 = u_5 = u_5 = u_5 = u_5$ ements $4 c_5^6$	F ₅ 0 0 1 1 0.45806 -0.64420 1 0 0 0	F3 F3 F3 F3 F3 F3 F3
	1.70711 0 0 0 0 1.70711 1.70711 0.58579 0 0 0 0	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29289 0.70711 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478 0 0	rix 0 0.5303 1.188682 0 u ₂ u ₂ ss Matrix -0.38321 -0.15873 -0.54194 0.84127 0	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.39531 -0.13699 0.86301	$ \left \begin{array}{c} \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{array} \right) = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F ₂ 0 1 0.29289 -0.18868 -0.15873 U4 U4 U4 U4 U4 U4 U4 E5	F ₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.70711 a is the only Displac 0.3953	F_4 0 0 1 -0.15873 $u_5 = u_5 = u_5 = u_5 = u_5$ ements x 10 ⁻⁶	F ₅ 0 0 1 0 0 1 0.45806 -0.64420 1 0 0 0 ad	F3 F3 F3 F3 F3 F3
	1.70711 0 0 0 0 1.70711 0.58579 0 0 0 0 0 0	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478 0 0	rix 0 0.5303 1.188682 0 U ₂ U ₂ U ₂ U ₂ U ₂ U ₂ U ₂ U ₂ U ₂ 0.5303 0.54194 0.84127 0	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.39531 -0.13699 0.86301	$\begin{bmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} =$ $\begin{bmatrix} u_3 \\ u_3 \\ u_3 \\ u_3 \end{bmatrix}$	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F_2 0 1 0.29289 -0.18868 -0.15873 U_4 U_4 U_4 U_4 U_4 U_4 U_4 U_4	F₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.70711 ₃ is the only Displac 0.3953 -0.6047	F_4 0 0 1 -0.15873 $u_5 = u_5 = u_5 = u_5 = u_5 = u_5 = u_5$ ements x 10 ⁻⁶ x 10 ⁻⁶	F ₅ 0 0 1 0.45806 -0.64420 1 0 0 ad (F ₃) (F ₃)	F3 F3 F3 F3 F3 F3
	1.70711 0 0 0 1.70711 1.70711 0.58579 0 0 0 0 0	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478 0 0 0 0 0 0 0 0 0 0 0 0 0	rix 0 0.5303 1.188682 0 u ₂ u ₂ ss Matrix -0.38321 -0.15873 -0.54194 0.84127 0	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.39531 -0.13699 0.86301	$ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = $ $ u_3 \\ u_3 \\ u_3 $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F_2 0 1 0.29289 -0.18868 -0.15873 U ₄ U ₅ C C C C C C C C C C C C C	F ₃ 0 1 -0.64420 0.45806 1.158732 0.45806 0.188682 -0.29289 0.414215 -0.70711 ₃ is the only Displac 0.3953 -0.6047	F_4 0 0 1 -0.15873 $u_5 = u_5 = u_5 = u_5 = u_5 = u_5 = u_5 = u_5$ ements x 10 ⁻⁶ x 10 ⁻⁶	F ₅ 0 0 1 0.45806 -0.64420 1 0 0 ad (F ₃) (F ₃)	F_3 F_3 F_3 F_3 F_3
	1.70711 0 0 0 1.70711 0.58579 0 0 0 0 0 1.8174 0.5223	St -0.70711 1.414215 0 0 0 0 0 0 29289 0.70711 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478 0 0 0 0 0 0 0 0 0 0 0 0 0	rix 0 0.5303 1.188682 0 u ₂ u ₂ ss Matrix -0.38321 -0.15873 -0.54194 0.84127 0 ts -0.4677 -0.1370	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.86301 0.86301	$ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = $ $ u_3 \\ u_3 \\ u_3 $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F_{2} 0 1 0.29289 -0.18868 -0.15873 u_{4} u_{5} F_{5} u_{5} u_{6} u_{7} u_{7} u_{7} u_{8}	F₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.707111 ₃ is the only Displac 0.3953 -0.6047	F_{4} 0 0 0 1 -0.15873 0 $u_{5} = u_{5} = u$	F ₅ 0 0 1 0 0.45806 -0.64420 1 0 0 ad (F ₃) (F ₃) (F ₃)	F_3 F_3 F_3 F_3 F_3
	1.70711 0 0 0 1.70711 0.58579 0 0 0 0 0 0 0 0 0 1.8174 0.5323 1.3497	St -0.70711 1.414215 0 0 0 0 0 0 29289 0.70711 0 0 0.29289 0.70711 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478 0 0 0 0 0 0 0 0 0 0 0 0 0	rix 0 0.5303 1.188682 0 u ₂ u ₂ ss Matrix -0.38321 -0.15873 -0.54194 0.84127 0 -0.4677 -0.1370 -0.6047	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.39531 -0.13699 0.86301	$ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = $ $ u_3 \\ u_3 \\ u_3 $	F ₁ 1 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F_2 0 1 0.29289 -0.18868 -0.15873 U U U U U U U U U U U U U	F₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.707111 ₃ is the only Displac 0.3953 -0.6047 1.7450 0.3953	F_{4} 0 0 0 1 -0.15873 $u_{5} = u_{5} = u_{$		F_3 F_3 F_3 F_3 F_3
	1.70711 0 0 0 1.70711 0.58579 0 0 0 0 0 0 0 0 0 0 1.8174 0.5323 1.3497 -0.4677	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478 0 0 0 0 0 0 0 0 0 0 0 0 0	rix 0 0.5303 1.188682 0 u ₂ u ₂ ss Matrix -0.38321 -0.15873 -0.54194 0.84127 0 -0.4677 -0.1370 -0.6047 0.8630	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.39531 -0.13699 0.86301 0.86301	$ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} $	F ₁ 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	F_{2} 0 1 0.29289 -0.18868 -0.15873 u_{4}	F₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.707111 ₃ is the only Displac 0.3953 -0.6047 1.7450 0.3953	F_{4} 0 0 0 1 -0.15873 $u_{5} = u_{5} = u_{$	$\begin{array}{c} F_{5} \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array}$ 0.45806 -0.64420 1 0 0 ad (F_{3}) (F_{3}) (F_{3}) (F_{3})	F_3 F_3 F_3 F_3 F_3
	1.70711 0 0 0 1.70711 0.58579 0 0 0 0 0 0 0 0 0 1.8174 0.5323 1.3497 -0.4677 0.5323	St -0.70711 1.414215 0 0 0 0 0 0 0 0 0 0 0 0 0	iffness Mat -1 -0.41421 0.823194 0 0 1.414215 -0.70711 of the Stiffne 0.85898 0.35580 1.21478 0 0 0 0 0 0 0 0 0 0 0 0 0	rix 0 0.5303 1.188682 0 u ₂ u ₂ ss Matrix -0.38321 -0.15873 -0.54194 0.84127 0 ss -0.4677 -0.1370 -0.6047 0.8630 -0.1370	-0.70711 0.414215 -0.29289 0.188682 1.158732 0.823194 -0.41421 -1 0.53230 -0.13699 0.39531 -0.13699 0.86301 0.3953 -0.1370 0.3953 -0.1370 0.3953 -0.1370 0.8630	$ \begin{bmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{pmatrix} = $ $ \begin{bmatrix} u_3 \\ u_4 \\ u_5 \end{bmatrix} $	F ₁ 0.41421 0.70711 -0.45552 0.61679 1.188682 0.5303 0 0	$\begin{array}{c} F_2 \\ 0 \\ 1 \\ 0.29289 \\ -0.18868 \\ -0.15873 \\ \end{array}$	F₃ 0 1 -0.64420 0.45806 1.158732 0.188682 -0.29289 0.414215 -0.707111 ₃ is the only Displac 0.3953 -0.6047 1.7450 0.3953	F_{4} 0 0 0 1 -0.15873 $u_{5} = u_{5} = u_{$	$\begin{array}{c} F_{5} \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array}$ 0.45806 -0.64420 1 0 0 ad (F_{3}) (F_{3}) (F_{3}) (F_{3}) (F_{3}) (F_{3})	F_3 F_3 F_3 F_3 F_3

Page 4

ab bd dc ca cb ad	1,000,000 1,000,000 1,000,000 1,000,000 1,414,214 1,060,660	0° 90° 0° -45° 45°	1 0 1 0.7071 0.7071	0 1 0 1 -0.7071 0.7071		1.70711 0 0 0 0	-0.70711 1.414215 0 0 0	-1 -0.41421 0.823194 0 0	0 0.5303 1.188682 0	-0.70711 0.414215 -0.29289 0.188682 1.158732	
	Coordina	ate Transf	ormation		D	eflections	;	Elem	ent Deflec	tions	
Member		[β _e]				{ u }			$\{ u_e \}$		
ab	u _{ab} =	1 0	0 1		0.3953 0	x 10 ^{-€}	⁶ (F ₃)	=	0.3953 0	x 10⁻ੰ (F ₃	3)
bd	u _{bd} =	0 -1	1 0		0.3953 -1	x 10 ⁻⁶	⁶ (F ₃)	=	-1 -0.3953	x 10⁻⁰ (F ₃	3)
dc	u _{dc} =	1 0	0 0		0.3953 -1	x 10 ⁻⁶	⁶ (F ₃)	=	0.3953 0	x 10 ⁻⁶ (F ₃	3)
са	u _{ca} =	0 -1	1 0		0.0000 0.3953	x 10 ⁻⁶	⁶ (F ₃)	=	0.3953 0	x 10⁻⁵ (F ₃	3)
cb	u _{cb} =	0.7071 0	-0.7071 0		-0.9544 -0.3953	x 10 ^{-€}	⁶ (F ₃)	=	-0.3953 0	x 10⁻⁵ (F₃	3)
ad	u _{ad} =	0.7071 0	0.7071 0		1.7450 -0.6047	x 10 ⁻⁶	⁶ (F ₃)	=	0.8063 0	x 10 ⁻⁶ (F ₃	3)
EI	ement Stiff Local Cod	fness Mat ordinates a]	rix	Elen Deflec { u	nent ctions ₀ }	Ele	ment Ford	es	Ele	ement Ford	es
ab	1.0E+06 -1.0E+06	-1.0E+06 1.0E+06		0.3953 0	x 10 ⁻⁶ F ₃	=	395,308 -395,308	x 10⁻⁵ F ₃	=	395.3 -395.3	lb Ib
bd	1.0E+06 -1.0E+06	-1.0E+06 1.0E+06		-1 -0.3953	x 10 ⁻⁶ F ₃	=	-604,692 604,692	x 10 ⁻⁶ F ₃	=	-604.7 604.7	lb Ib
dc	1.0E+06 -1.0E+06	-1.0E+06 1.0E+06		0.3953 0	x 10 ⁻⁶ F ₃	=	395,308 -395,308	x 10 ⁻⁶ F ₃	=	395.3 -395.3	lb lb
са	1.0E+06 -1.0E+06	-1.0E+06 1.0E+06		0.3953 0	x 10 ⁻⁶ F ₃	=	395,308 -395,308	x 10⁻6 F₃	=	395.3 -395.3	lb lb
cb	1.4E+06 -1.4E+06	-1.4E+06 1.4E+06		-0.3953 0	x 10 ⁻⁶ F ₃	=	-559,048 559,048	x 10 ⁻⁶ F ₃	=	-559.0 559.0	lb lb
ad	1.1E+06 -1.1E+06	-1.1E+06 1.1E+06		0.8063 0	x 10 ⁻⁶ F ₃	=	855,211 -855,211	x 10 ⁻⁶ F ₃	=	855.2 -855.2	lb Ib

Page A23.15 Pinned Truss

Line 2, Equation (75)

A = 60 t_2 should be A = 60 t^2

Page B1.8 Ramberg-Osgood Stress-Strain Curve

Column 1, Paragraph 1

"...when Ramsberg and Osgood ..." should be "...when Ramberg and Osgood ..."

Column 1, Paragraph 2

"The Ramsberg and Osgood proposed ..." should be "Ramberg and Osgood proposed a ..."

Equation (3)
$$\frac{E \varepsilon}{F_{0.7}} = \frac{f}{F_{0.7}} + \left(\frac{f}{F_{0.7}}\right)^n \quad \text{should be} \quad \frac{E \varepsilon}{F_{0.7}} = \frac{f}{F_{0.7}} + \frac{3}{7} \left(\frac{f}{F_{0.7}}\right)^n$$

This is obvious when you plot the equation as Figure B1.14 on page B1.9.

Figure B1.14 Stress-Strain in the Inelastic Range

Page C1.5 Mohr's Circle for Principal Stresses

I believe that the angle theta should equal 19.33 degrees instead of 18 degrees 50 minutes.

$$\tan 2 \theta' \frac{2 \times 12000}{1000 - (-20000)} = .8 \qquad \text{should be}$$
$$\tan 2 \theta' = \frac{2 (12,000)}{10,000 - (-20,000)} = 0.675 \ \text{radians} \qquad \theta = 19.33 \ \text{degrees}$$

The figure for Mohr's circle on page C1.5 might look like:

Page C1.5 Tri-Axial or Three Dimensional Stresses

Article C1.10

Missing au_{xz}^2 term.

Equation (14) is:

$$\sigma^{3} - (\sigma_{x} + \sigma_{y} + \sigma_{z})\sigma^{2} + (\sigma_{x}\sigma_{y} + \sigma_{y}\sigma_{z} + \sigma_{z}\sigma_{x} - \tau_{xy}^{2} - \tau_{yz}^{2})\sigma - (\sigma_{x}\sigma_{y}\sigma_{z} + 2\tau_{yz}\tau_{xz}\tau_{xy} - \sigma_{x}\tau_{yz}^{2} - \sigma_{y}\tau_{xz}^{2} - \sigma_{z}\tau_{xy}^{2}) = 0$$

It should be:

$$\sigma^{3} - (\sigma_{x} + \sigma_{y} + \sigma_{z})\sigma^{2} + (\sigma_{x}\sigma_{y} + \sigma_{y}\sigma_{z} + \sigma_{z}\sigma_{x} - \tau_{xy}^{2} - \tau_{yz}^{2} - \tau_{xz}^{2})\sigma - (\sigma_{x}\sigma_{y}\sigma_{z} + 2\tau_{yz}\tau_{xz}\tau_{xy} - \sigma_{x}\tau_{yz}^{2} - \sigma_{y}\tau_{xz}^{2} - \sigma_{z}\tau_{xy}^{2}) = 0$$

Thanks to Chris Boshers.

Page C1.9 Octahedral Shear Stress Theory

Right Hand Column "For a triaxial stress system,"

$$\overline{f} = \frac{1}{\sqrt{2}} \sqrt{(f_x - f_z)^2 + (f_z - f_y)^2 + (f_y - f_x)^2 + 6(f_{sxz} + f_{szy} + f_{syx})^2}$$

should be

$$\overline{f} = \frac{1}{\sqrt{2}} \sqrt{\left(f_x - f_z\right)^2 + \left(f_z - f_y\right)^2 + \left(f_y - f_x\right)^2 + 6\left(f_{sxz}^2 + f_{szy}^2 + f_{syx}^2\right)}$$

or another way to write the von Mises Effective Stress:

$$\overline{\sigma} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)}$$

Page C2.2 Non-Dimensional Column Curves

Right Hand Column, Section C2.5

"... non-dimentional column curves have been derived by Cozzone and Melcon (See Ref. 3)."

should be

"... non-dimensional column curves have been derived by Cozzone and Melcon (See Ref. 2)."

Page C2.13 Strength of Columns using Column Curves

L' = 24.9	should be	24.49 in	
L'/r = 41	should be	40.9	etc.

Page C2.13 Strength of Columns with Stable Cross Sections

Right Hand Column, Case 2

"subjected to a temperature of 600° F ..." should be "subjected to a temperature of 300° F ..."

Page C2.14 Strength of Columns with Stable Cross Sections

Column 1

Px = .618 should be $\rho_x = 0.618$ in

"L' = L, sin c = 1" should be "L' = L, since c = 1"

My guess is that Dr. Bruhn meant to use room temperature values (see page B1.11) for the first part of the example ...

"From Table B1.1, n = 8.8, E_c = 7,800,000 and $F_{0.7}$ = 29,000" should be

"From Table B1.1, n = 16.6, $E_c = 10,500,000$ and $F_{0.7} = 72,000$ "

Room temperature values	B = 1.365	$F_{c} / F_{0.7} = 0.537$	F _c = 38,635 psi
Compare to 450° F values	B = 1.005	F _c / F _{0.7} = 0.736	F _c = 21,344 psi

Page C2.15 Strength of Stepped Column

Left Hand Column			
"B becomes π^2 or 10 as	shown"	should be	"B becomes π^2 or 9.87 as shown .
Right Hand Column			
L / ρ = 54.5 P = 26,300 F2 = 59,500 For Portion 2	54.9 26,311 59,556		
$f_1 / F_{0.7} = 0.826$ $E_t / E = 0.675$ $E_t = 0.675 \times 10,500,000$ $E I_1 / E I_2 = 4.7$ B = 5.6	0.827 0.731 = 7,090,000 4.31 5.92	E _t = 0.731 x 10,	,500,000 = 7,670,000

Page C2.16 Column Strength With Known End Restraining Moment

Figure C2.34 Height of truss is missing. It should be 25 inches.

μ = 258,000	(257,551)
-------------	-----------

 μ L / E I = (258,000 x 30) / 29,000,000x .0367 = 7.28

should be μ L / E I = (257,551 x 30) / 29,000,000 x .03867 = 6.89

."

 μ L / E I = 2.58 2.56

Page C2.17 Column Strength With Known End Restraining Moment

Left Hand Column

$$q = rac{K^1 \ L^3}{E \ I}$$
 should be $q = rac{K' \ L^3}{E \ I}$

Page C2.17 Columns With Elastic Lateral Supports

Left Hand Column, Last Sentence

"... in the problem dealing with a *tapered* column." *should be* "... in the problem dealing with a *stepped* column."

Page C2.18 References

References

Cozzone Σ Melcon should be Cozzone & Melcon

Page C3.5 Bending Strength

Example Problem 2, column 1

 $F_b = 38000 + 23700 (1.17 - 1) = 40770$ should be

 $F_b = 38,000 + 23,700 (1.17 - 1) = 42,029$ (Actually K = 1.166 or 1.167)

 $M_{ult} = F_b (1/c) = 42,029 (0.358) = 15,046$

Margin of Safety = $M_{ult} / M - 1 = 15,046 / 14,000 - 1 = 0.07$

Page C4.24 Ultimate Strength in Combined Compression, Bending and Torsion

Right Hand Column

"One" should be a "prime"

 $R_{b^1}^2 + R_{st}^2 = (1 - R_c)^2$ should be $R_{b'}^2 + R_{st}^2 = (1 - R_c)^2$

 $R'_{b} = .20$ should be $R_{b'} = 0.20$

Page C4.25 Ultimate Strength in Combined Compression, Bending and Torsion

Right hand column ...

My solution gives M_{max} = 1,339.9 in-lb versus 1,347 in-lb which yields the following interaction curve:

Page C4.26 Combined Compression, Bending, Flexural Shear and Torsion

Figure C4.40

$$R_c + R_{st} + \sqrt{R_b^2 + R_s^2} = 1.0$$
 should be $R_c + R_{st} + \sqrt{R_b^2 + R_s^2} = 1.0$

Page C5.4 Chart of Non-Dimensional Compressive Buckling Stress

Figure C5.8 Chart of Non-Dimensional Compressive Buckling Stress – Clamped Edges

The equation listed under the figure is for a long plate with *simply supported* edges instead of clamped.

$$\eta = \left(\frac{E_s}{2E}\right) \left\{ 1 + 0.5 \left[1 + \left(\frac{3E_t}{E_s}\right)\right]^{\frac{1}{2}} \right\} \frac{\left(1 - v_e^2\right)}{\left(1 - v^2\right)} \qquad \text{should be}$$
$$\eta = \left(\frac{E_s}{E}\right) \left\{ 0.352 + 0.324 \left[1 + \left(\frac{3E_t}{E_s}\right)\right]^{\frac{1}{2}} \right\} \frac{\left(1 - v_e^2\right)}{\left(1 - v^2\right)} \quad \text{or if you wish}$$
$$\eta = \left\{ 0.352 + 0.324 \left[1 + \left(\frac{3E_t}{E_s}\right)\right]^{\frac{1}{2}} \right\} \left(\frac{E_s}{E}\right) \frac{\left(1 - v_e^2\right)}{\left(1 - v^2\right)}$$

or as it should be on page 49 of NACA TN 3781

"The plasticity reduction factor for a long plate with simply supported edges is

$$\eta = \left[\left(\frac{E_s}{E} \right) \frac{\left(1 - v_e^2\right)}{\left(1 - v^2\right)} \right] \left\{ 0.500 + 0.250 \left[1 + \left(\frac{3E_t}{E_s} \right) \right]^{\frac{1}{2}} \right\}$$

while for a long clamped plate"

$$\eta = \left[\left(\frac{E_s}{E} \right) \frac{\left(1 - v_e^2\right)}{\left(1 - v^2\right)} \right] \left\{ 0.352 + 0.324 \left[1 + \left(\frac{3E_t}{E_s} \right) \right]^{\frac{1}{2}} \right\}$$

Page C5.5 Simplified Cladding Reduction Factors

In Table C5.1, it is not obvious how f and β are defined.

They are defined as:

f = total clad thickness / (total core + clad thickness)

 β = cladding proportional limit / nominal buckling stress

where the cladding proportional limit is 6 ksi for a 2000 series aluminum and 12 ksi for a 7000 series aluminum.

NACA TN-3781 Handbook of Structural Stability Part I - Buckling of Flat Plates

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084505 1993084505.pdf

...... George Gerard and Herbert Becker

Bruhn Figure C5.10 is Figure 12, page 78 in NACA TN-3781.

Bruhn Table C5.1 is Table 3, page 61 in NACA TN-3781.

Thanks to Jim Baldwin and Jeff Schmidt.

Page C5.7 Bending – Buckling Coefficient of Plates

Figure C5.15 Bending-Buckling Coefficient of Plates as a Function of a/b

Abscissa should range from 0.3 to 2.3 instead of 3 to 23.

Thanks to R.L. Hurwitz.

Page C5.8 Combined Bending and Shear

First column, Section C5.10

" R_s is the stress ratio due to torsional shear stress and R_{st} is the stress ratio for transverse or flexural shear stress."

should be ...

" R_{st} is the stress ratio due to torsional shear stress and R_s is the stress ratio for transverse or flexural shear stress."

Page C5.11 Cantilever Wing – Skin, Ribs and Stiffeners

Bottom of Column 1 "From Art. C5.12 the interaction equation is $R_c + R_s^2 = 1$ " ... which is $R_L + R_s^2 = 1$

Bottom of Column 2

$$q = -\frac{200}{49.3} = 4.05 \sum Z A$$
 should be $q = -\frac{200}{49.3} \sum Z A = -4.05 \sum Z A$

Bending, Cantilever Wing - Skin Buckling

Stringer Area, A = 0.18 in²

f_c = 2 P / A = 1,400 lb / 3.74 in² = 374 psi

Angle Area, $A = 0.25 \text{ in}^2$

 $f_c = M_x z / I_x = 5,170$ in-lb 4.233 in / 49.30 in⁴ = 444 psi

 $q_1 = 0 \text{ (Symmetry)}$ $q_{21} = (-4.0568) \Sigma Z A = -4.0568 (4.2325) 2.5 (0.035) = -1.50 \text{ lb / in}$ $q_{23} = -1.50 - 4.0568 \Sigma Z A = 1.50 - 4.0568 (3.715) 0.18 = -4.22 \text{ lb / in}$ $q_{32} = -4.22 - 4.0568 \Sigma Z A = -4.22 - 4.0568 (4.2325) 5.0 (0.035) = -7.22 \text{ lb / in}$ $q_{34} = -7.22 - 4.0568 \Sigma Z A = -7.22 - 4.0568 (3.69) 0.25 = -10.96 \text{ lb / in}$ $q_{43} = -10.96 - 4.0568 \Sigma Z A = -10.96 - 4.0568 (3.69 / 2) 0.051 (3.69) = -12.37 \text{ lb / in}$

Page C5.12 Buckling Strength of Flat Sheet in Combined Stress Systems

Column 1, first equation

Total f_s = 163 + 854 = 917 psi *should be* Total f_s = 163 + 854 = 1,017 psi
R_s = 0.368 R_c + R_s² = 1.042
M.S. =
$$\frac{2}{0.906 + \sqrt{0.906^2 + 4 (0.368)^2}} - 1 = -0.04$$

Page C6.3 Buckling Stress for Hat-Section Stiffeners

Figure C6.7 "Ref 12" should be "Ref 5"

It was Reference 12 in NACA TN-3782, page 17:

 Van Der Maas, Christian J.: Charts for the Calculations of the Critical Compressive Stress for Local Instability of Columns With Hat Sections. Jour. Aero. Sci., vol. 21, no. 6, June 1954, pp. 399-403.

NACA TN-3782, Figure 6, page 31 Bruhn Figure C6.7, page C6.3

NACA TN-3782 Handbook of Structural Stability Part II - Buckling of Composite Elements

http://ntrs.nasa.gov/search.jsp?R=239713&id=4&qs=N%3D4294809390 Herbert Becker

Charts for the Calculation of the Critical Compressive Stress for Local Instability of Columns with Hat Sections

Journal of the Aeronautical Sciences, Volume 21, No. 6, June 1954

Van Der Maas, Christian J.

Page C6.4 Z-Section Stiffeners

Near the bottom of the right hand column

Fig. C should be Figures C6.9 and C6.10, page C6.5 Thanks to Jim Baldwin.

Page C7.6 Restraint Produced by Lips and Bulbs

Equation C7.8

2.73
$$\frac{I_L}{b_f t^3} - \frac{A_L}{b_f t} \ge 5$$
 should be 2.73 $\frac{I_L}{b_f t_f^3} - \frac{A_L}{b_f t_f} \ge 5$

Equation C7.9

$$0.910 \left(\frac{b_{L}}{t}\right)^{3} - \frac{b_{L}}{t} = 5 \frac{b_{f}}{t} \text{ should be} \qquad 0.910 \left(\frac{b_{L}}{t_{f}}\right)^{3} - \frac{b_{L}}{t_{f}} \ge 5 \frac{b_{f}}{t_{L}}$$

$$2.73 \frac{I_{L}}{b_{f} t_{f}^{3}} - \frac{A_{L}}{b_{f} t_{f}} \ge 5 \qquad 2.73 \frac{t_{L} b_{L}^{3}/3}{b_{f} t_{f}^{3}} - \frac{b_{L} t_{L}}{b_{f} t_{f}} \ge 5$$

$$0.910 \frac{b_{L}^{3}}{t_{f}^{3}} - \frac{b_{L}}{t_{f}} \ge 5 \left(\frac{b_{f}}{t_{L}}\right) \qquad 0.910 \left(\frac{b_{L}}{t_{f}}\right)^{3} - \frac{b_{L}}{t_{f}} \ge 5 \frac{b_{f}}{t_{L}}$$

Figure C7.11 Lip Criteria for Formed and Extruded Sections

Figure C7.12

Minimum bulb dimensions required for buckle as simply supported plate

should be

Minimum Bulb Dimensions Required for Flange to Buckle as a Simply Supported Plate

D. F. Windenberg Proceedings. 5th International Congress for Applied Mechanics pages 54-61, 1939
 Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure C7.12, page C7.6

Page C7.6 Restraint Produced by Lips and Bulbs

Right Column, second and third line ... instead of 0.388 and 3.617 ...

Joe Zuklic calculates compressive buckling coefficients of 0.389 and 3.615.

For v = 0.3

Simply Supported Plate K = 4.0 From Figure C5.2C on page C5.2

$$f_{cr} = \frac{\pi^2 K E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2 \qquad \frac{\pi^2 K}{12(1-\nu^2)} = \frac{\pi^2 (4.0)}{12(1-0.30^2)} = 3.615$$

Simple - Free EdgesK = 0.43From Figure C5.2E on page C5.2(or 0.42 or 0.416 depending on the source)

$$f_{cr} = \frac{\pi^2 K E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2 \qquad \frac{\pi^2 K}{12(1-\nu^2)} = \frac{\pi^2 (0.43)}{12(1-0.30^2)} = 0.3886$$

For v = 0.33

Simply Supported Plate K = 4.0 From Figure C5.2C on page C5.2

$$f_{cr} = \frac{\pi^2 K E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2 \qquad \frac{\pi^2 K}{12(1-\nu^2)} = \frac{\pi^2 (4.0)}{12(1-0.33^2)} = 3.692$$

Simply Supported – Free K = 0.43 From Figure C5.2E on page C5.2 (or 0.42 or 0.416 depending on the source)

$$f_{cr} = \frac{\pi^2 K E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2 \qquad \frac{\pi^2 K}{12(1-\nu^2)} = \frac{\pi^2 (0.43)}{12(1-0.33^2)} = 0.3969$$

Page C7.7 Crippling Stresses

Left column, Problem 1

$$(a + b) 2 t = \frac{1.95}{0.10} = 19.5$$
 should be
 $\frac{(a + b)}{2 t} = \frac{1.95}{0.10} = 19.5$ Thanks to Jim Baldwin.

Page C7.10 Sheet Effective Widths

Right Hand Side

Simply Supported (for $\upsilon = 0.3$)

K = 4.0 From Figure C5.2C on page C5.2

$$f_{cr} = \frac{\pi^2 K E}{12 (1 - v^2)} \left(\frac{t}{b}\right)^2 \qquad F_{cy} = \frac{\pi^2 (4.0) E}{12 (1 - v^2)} \left(\frac{t}{w_e}\right)^2 \\ \left(\frac{t}{w_e}\right)^2 = \frac{12 (1 - v^2) F_{cy}}{4 \pi^2 E} \qquad \left(\frac{t}{w_e}\right)^2 = 0.2766 \frac{F_{cy}}{E} \\ \left(\frac{t}{w_e}\right) = 0.5259 \sqrt{\frac{F_{cy}}{E}} \qquad \left(\frac{w_e}{t}\right) = 1.90 \sqrt{\frac{E}{F_{cy}}} \\ \sqrt{\frac{E}{E}} \qquad \sqrt{\frac{E}{E}}$$

Effective Width

$$\left(\frac{-e}{t}\right) = 1.90 \sqrt{\frac{F_{cy}}{F_{cy}}}$$
$$w_e = 1.90 t \sqrt{\frac{E}{F_{cy}}}$$

From test data for light stringers

$$w_e = 1.70 t \sqrt{\frac{E}{F_{cy}}}$$

Page C7.11 Sheet Effective Widths

Right Hand Side

Fixed – Free Edges (for v = 0.3)

K = 0.43 From Figure C5.2E on page C5.2

$$f_{cr} = \frac{\pi^2 K E}{12 \left(1 - v^2\right)} \left(\frac{t}{b}\right)^2 \qquad \qquad F_{cy} = \frac{\pi^2 \left(0.43\right) E}{12 \left(1 - v^2\right)} \left(\frac{t}{w_e}\right)^2$$
$$\left(\frac{t}{w_e}\right)^2 = \frac{12 \left(1 - v^2\right) F_{cy}}{0.43 \pi^2 E} \qquad \qquad \left(\frac{t}{w_e}\right)^2 = 2.573 \frac{F_{cy}}{E}$$
$$\left(\frac{t}{w_e}\right) = 1.604 \sqrt{\frac{F_{cy}}{E}} \qquad \qquad \left(\frac{w_e}{t}\right) = 0.623 \sqrt{\frac{E}{F_{cy}}}$$
Effective Width
$$\qquad \qquad w_e = 0.623 t \sqrt{\frac{E}{F_{cy}}}$$

Thanks to Joe Zuklic.

Page C7.15 Failure by Inter-Rivet Buckling

Right Column, Equation (C7.24)

$$F_{ir} = \frac{c \pi^2 \eta \overline{\eta}}{12 \left(1 - v^2\right)} \left(\frac{t_s}{p}\right)^2 \qquad \text{should be} \qquad F_{ir} = \frac{c \pi^2 \eta \overline{\eta} E_t}{12 \left(1 - v^2\right)} \left(\frac{t_s}{p}\right)^2$$

Page C7.26 Column Strength of Stiffener With Effective Sheet

Left column w = .965 should be 0.960 in

Figure C7.36 The peak of the curve for S / ρ = 3.0 is too high.

The figure should look like ...

1.135

Page C7.26 Column Strength of Stiffener With Effective Sheet

Right column

.2063	0.205
1.05	1.117
ρ = .548	0.565
L' / ρ = 44.8	43.4
Fc = 26,050	26,357 psi

Page C7.27 Column Strength of Stiffener With Effective Sheet

Left Column	Revised	effective	width .		w = .99 in	should be	w = 0.948 in
26,050	should b)e	26,35 ⁻	7			
Failing Load = 3	675	should be		3,708			

Page C8.24 Buckling Strength of Monocoque Cylinders

Figures C8.25 – C8.28, pages C8.24 and C8.25 are not applicable to general design. Thanks to SparWeb.

Page C9.12 Orthotropic Circular Cylinders

Table C9.1 Bending	equation	should	be
$g = 4.80 \left[\left(\frac{b}{d} \right) \right]$	$\left(\frac{\rho_s}{\rho_f}\right) \left(\frac{t_s}{t_f}\right)^2 \left(\frac{t_s}{t}\right)^2$	$\left(\frac{\rho_s}{b} \right)^2 \right]^{1/4}$	

NACA 3786, page 33, equation (46) ...

When σ_c from equations (31) and (45) are equated, it is found that

$$g = 4.80 \left[\frac{b}{d} \frac{\rho_{\rm s}}{\rho_{\rm f}} \left(\frac{t_{\rm s}}{t_{\rm f}} \right)^2 \left(\frac{t_{\rm s}}{t} \right)^2 \left(\frac{\rho_{\rm s}}{b} \right)^2 \right]^{1/4}$$
(46)

NACA 3786, Table 1, page 63 also lists the equation incorrectly.

Thanks to SparWeb.

Page C9.14 References

Column 2, References

(2) Gerard & Becker Handbook of Structural Stability Part III - Buckling of Curved Plates and Shells

NACA Technical Note 3883	should be	NACA Technical Note 3783
(3) NACA WRL-57	should be	NACA WR-L-57

Page C10.7 Stiffener Size to Use with Non-Buckling Web

Equation C10.8, Section C10.10 is missing brackets. Thanks to Dave Kubala.

$$I_{v} = \frac{2.29d}{t} \frac{V h_{w}}{33 E}^{4/3} \qquad \text{should be} \qquad I_{v} = \frac{2.29 d}{t} \left(\frac{V h_{w}}{33 E}\right)^{4/3}$$

Page C10.8 Minimum Moment of Inertia Required in Stiffening Members

The equation in Figure C10.9 at the top of the page is difficult to read. It is:

$$\frac{I_v}{d t^3} = \frac{0.0217}{\left(\frac{d}{h \sqrt{K_s}}\right)^{\frac{8}{3}}}$$
 Thanks to Jim Baldwin.

Page C10.14 Buckling Equation

Right Hand Column approximately halfway down.

 $d / h \sqrt{k_s}$ should be $\frac{d}{h \sqrt{K_s}}$ see Figure C10.9, page C10.8

The required moment of inertia ... where k_s as used in buckling equation must be multiplied by

$$\pi^2 / 1 - .3^2 = .905$$
 Thus,

$$d / h \sqrt{k_s} = 3.57 / 7.125 \sqrt{6.4 \times .905} = 0.208$$

should be

The required moment of inertia …where K_{s} as used in the shear buckling equation must be multiplied by

$$\frac{\pi^2}{12(1-\nu^2)} = \frac{\pi^2}{12(1-0.3^2)} = 0.904$$
 Thus,
$$\frac{d}{h\sqrt{K_s}} = \frac{3.57}{7.125\sqrt{6.4(0.904)}} = 0.208$$

Thanks to Jim Baldwin.

Page C11.11 Wagner Beam, Check of Web to Flange Rivet Attachment

$$P_{r} = \left[\left(\frac{V_{cr}}{h} \frac{I_{F}}{I} + \frac{V_{u}}{h} \right)^{2} + \left(\frac{V_{u}}{h} \tan \alpha \right)^{2} \right]^{1/2}$$

$$P_{r} = \left[\left(\frac{244}{28.56} \frac{210}{270.5} + \frac{12850}{28.56} \right)^{2} + \frac{12850}{28.56} x .933^{3} \right]^{1/2} \text{ should be}$$

$$P_{r} = \left\{ \left[\frac{244}{28.56} \left(\frac{210}{270.5} \right) + \frac{12,850}{28.56} \right]^{2} + \left[\left(\frac{12,850}{28.56} \right) 0.933 \right]^{2} \right\}^{1/2}$$

Page C11.12 Lower Flange Bending Stresses

$$f_b = \frac{-12200 \ x - 17.42}{270.5} + \frac{-662800 \ x \ 19.06}{210}$$
 should be

$$f_b = \frac{-12,200(-17.42)}{270.5} + \frac{-662,800(-19.06)}{210}$$

Page C11.12 Combined Flange Axial Stresses

$$f_c = -35167 - 10770 = -45337 \ psi$$
 should be $f_c = -35,167 - 10,170 = -45,337 \ psi$

Page C11.13 Crippling Stress for the Upper Flange

$$\frac{A}{g t^2} \left(\frac{F_{cy}}{E_c}\right)^{1/2} = \frac{0.675}{4 x .1562^2} \left(\frac{70,000}{10,300,000}\right)^{1/2} = .572$$

From Fig. C7.7 we read Fcs / Fcy = .90, hence Fcs = $0.90 \times 70000 = \frac{63000}{10000}$ psi. compression.

For a "tee" section Figure C7.8 (page C7.5) is applicable and the cutoff is 0.80 F_{cy} . (Without bulbs, g = 3.)

From Figure C7.8 we read F_{cs} / F_{cy} = 0.839, hence F_{cs} = 0.839 (70,000 psi) = 58,730 psi compression.

Cutoff = 0.80 (70 ksi) = 56 ksi Therefore, F_{cs} = 56 ksi.

Page C11.14 NACA Symbols

- Q static moment about neutral axis of parts of cross-section as specified by subscripts. in. should be
- Q First Area Moment about Neutral Axis of Parts of Cross-Section as Specified by Subscripts (in³)

Page C11.15 Thickness and Flange Flexibility Factor

- t thickness Delete the extra parenthesis ")"
- wd flange flexibility factor Delete the parenthesis "(".
- ωd Flange Flexibility Factor defined by expression (19a) in NACA TN-2661

Page C11.17 Average and Maximum Stress in Upright or Web Stiffener

Column 1, Section C11.20

$$f_u = \frac{k \ f_s \ \tan \alpha}{\frac{A_u}{dt} + .05 \ (1 - k)} \qquad \text{should be} \qquad f_u = \frac{k \ f_s \ \tan \alpha}{\frac{A_u}{dt} + 0.50 \ (1 - k)}$$

See NACA TN-2661, page 19, equation (30a). Thanks to Spero Papantos.

$$\sigma_{U} = - \frac{k\tau \tan \alpha}{\frac{A_{U_{e}}}{dt} + 0.5(1 - k)}$$
(30a)

NACA TN-2661 A Summary of Diagonal Tension Part I : Methods of Analysis

http://naca.central.cranfield.ac.uk/report.php?NID=5043..... Paul Kuhn, James P. Peterson, L. Ross Levin

Page C11.18 Web Design

Section C11.23, column 2, eq 62. See NACA TN 2661, equation 33a, page 27. Thanks to Joe Zuklic.

 $f_{s max} = f_s (1 + k C_1) (1 + k C_2)$ should be $f_{s max} = f_s (1 + k^2 C_1) (1 + k C_2)$

Page C11.19 Secondary Bending Moment in Flanges

Equation (69) $M = \frac{1}{12} k f_s t d^2 C_3$ should be $M_{\text{max}} = \frac{1}{12} k f_s t d^2 C_3 \tan \alpha$ $M_{\text{max}} = kC_3 \frac{S_W d^2 \tan \alpha}{12h}$

See NACA TN 2661, page 50. Thanks to SuperStress on the www.eng-tips.com website.

Page C11.38 Allowable Stress in Fuselage Skin - Diagonal Tension

Example problem in Section C11.34. From page A20.8, the effective moment of inertia, I = 3,252 in⁴ (3,257 in⁴ by my calculations) instead of 2,382. This affects the stringer stresses ($f_{p max}$, $f_{p avg}$) and the shear flow in the panels (q_{2-3} and q_{3-4}).

The moment arms, z for the calculation of the first area moment, Q for stringers 2, 3 and 4 should be 34.56, 31.06 and 26.76 inches respectively instead of 38.3, 36.4 and 32.9 inches using $\overline{z} = 0.76$ in from page A20.8. (I calculate $\overline{z} = 0.81$ in) This would impact the calculations for the shear flow in the panels.

Page C11.44 Longeron Type Fuselage Structure

Column 1, near the bottom ...

"Fig. C11.37 Example Problem" should be "C11.37 Example Problem"

Page C11.49 References

Column 2, near the bottom ... "Technical Note" should be "Technical Memorandum" ... two places.

"T.N. 838" should be "TM-838"

"T.N. 774" should be "TM-774"

Thanks to Jim Baldwin.

Page C12.13 Hexagonal Cell Core Wrinkling - Biaxial and Shear Interaction

At the bottom of the right hand column it appears that a square root symbol is missing ...

$$M.S. = \frac{2}{R_a + R_a^2 + (4 R_s^2)} - 1 = -0.18$$

should be

$$M.S. = \frac{2}{R_a + \sqrt{R_a^2 + 4 R_s^2}} - 1 = -0.02$$

$$M.S. = \frac{2}{0.762 + \sqrt{0.732^2 + 4(0.543)^2}} - 1 = -0.02$$

Interaction Equations

$$R_a + R_s^2 = 1$$
 Cell Core Buckling Biaxial and Shear Interaction
 $R_a + R_s^2 = 1$ Cell Core Wrinkling Biaxial and Shear Interaction

Page C12.14 Shear Crimping

Column 1

"form Moore's Circle" should be "from Mohr's Circle" Thanks to Dr. Howard W. Smith.

Page D3.6 Splice with Filler

Column 1, Figure D3.18

"7075-T6 Slum." should be "7075-T6 Alum."

Bearing allowables "Bearing In .072 = 1630#" and "Bearing In .081 = 1840#"

are apparently based on F_{bru} = 145 ksi which seems high for 7075-T6 Sheet.

Case II

Using F_{bru} = 135 ksi I calculate:

"Bearing in 0.072 inch sheet = 1,519 lb" and "Bearing in 0.081 inch sheet = 1,709 lb"

The number of fasteners required does not change in this example if F_{bru} is greater than 132,128 psi.

Page D3.7 Framing Cutouts in Web

Column 1, last line, "as shown in Fig. C3.20" should be "as shown in Fig. D3.20".

Thanks to Joe Zuklic.

Page D3.9 Framing Cutouts in Web

Don't interpret the "dashes" as "minus" signs in any of the example cutouts. Thanks to Chris Boshers.

Figure D3.24

Figure D3.24 (b) Middle lower bay should have the shear flow, q_0 reversed.

 q_o should be $-q_o$

The upper and lower arrows in the bay should be reversed.

Self-Balancing Internal Loads

Final Shear Flow Distribution

Page D3.10 Framing Cutouts With Doublers or Bents

First column, fourth paragraph from the bottom ...

"Th se allowables apply..." should be "These allowables apply..."

Bruhn Errata

2.0 Aircraft Structures

The first edition of *Aircraft Structures* by David J. Peery is another classic book on aircraft stress analysis. The following pages list topics from the book that are a good start to any stress analyst's education.

Errata – Analysis of Wing Ribs

Section 8.3, page 192

q _{ba} = 274 lb/in	q _{ac} = 374 lb/in	q _{bc} = 566 lb/in	Incorrect
-----------------------------	-----------------------------	-----------------------------	-----------

Three Equations, Three Unknowns

$$-222 q_{ba} - 168 q_{ac} = -90,000$$
$$-20 q_{ba} + 20 q_{ac} = 2,000$$
$$-4 q_{ba} - 6 q_{ac} - 10 q_{bc} = -9,000$$

In Matrix Form

$$\begin{bmatrix} -222 & -168 & 0 \\ -20 & 20 & 0 \\ -4 & -6 & -10 \end{bmatrix} \begin{cases} q_{ba} \\ q_{ac} \\ q_{bc} \end{cases} = \begin{cases} -90,000 \\ 2,000 \\ -9,000 \end{cases}$$

Invert Matrix

$$\begin{bmatrix} -222 & -168 & 0 \\ -20 & 20 & 0 \\ -4 & -6 & -10 \end{bmatrix}^{-1} = \begin{bmatrix} -0.00256 & -0.02154 & 0 \\ -0.00256 & 0.02846 & 0 \\ 0.00256 & -0.00846 & -0.10 \end{bmatrix}$$

Solve

$$\begin{cases} q_{ba} \\ q_{ac} \\ q_{bc} \end{cases} = \begin{bmatrix} -0.00256 & -0.02154 & 0 \\ -0.00256 & 0.02846 & 0 \\ 0.00256 & -0.00846 & -0.10 \end{bmatrix} \begin{cases} -90,000 \\ 2,000 \\ -9,000 \end{cases} = \begin{cases} 187.7 \\ 287.7 \\ 652.3 \end{cases}$$

 $q_{ba} = 188$ lb/in $q_{ac} = 288$ lb/in $q_{bc} = 652$ lb/in

David J. Peery

Aircraft Structures

First Edition, Section 8.5, pages 202-210

Shear Flows for Wing Box Without Cutout

q_b All Three Bays в 30,000 qa q_c 9,000 Δ -4 + 4 \mathbf{q}_{d} $\Sigma F_x = 0$ -30 30 9,000 0 + = + ÷ \mathbf{q}_{d} $\mathbf{q}_{\mathbf{b}}$ $\Sigma F_z = 0$ - q_a 10 + 2 + q_c 12 + 30,000 $\mathbf{q}_{\mathbf{b}}$ CCW+ $\Sigma M_A = 0$ 150 400 + 180 180 \mathbf{q}_{a} - $\mathbf{q}_{\mathbf{b}}$ \mathbf{q}_{c} - **q**_d 30,000 9,000 7 CCW+ $\Sigma M_B = 0$ 300 300 ÷ 15 \mathbf{q}_{c} - \mathbf{q}_{d} -0 -30 0 -9,000 30 qa -30,000 -10 2 12 0 = $\mathbf{q}_{\mathbf{b}}$ 150 -400 180 -180 0 \mathbf{q}_{c} 300 0 0 -300 -387,000 \mathbf{q}_{d} 0.0842 -0.2105 -0.0074 0.0128 -9,000 588 -0.0789 -0.0053 0.0063 -30,000 0.0316 -360 = 0.0649 -0.0789 -0.0053 0.0096 0 -1,950 0.0649 -0.0789 -0.0053 0.0063 -387,000 -660

2.3

Correcting Shear Flows

Wing Station, WS60 to WS90

Correcting Shear Flows

2.5

Shear Flows Without Cutout, WS30 to WS60

Shear Flows Without Cutout, WS60 to WS90

Correcting Shear Flows, WS30 to WS60

Final Corrected Shear Flows, WS30 to WS60

Correcting Shear Flows, WS60 to WS90

Cutouts in Semi-Monocoque Structures

Shear Flows Without Cutout, WS90 to WS120

Cutouts in Semi-Monocoque Structures

Lug Shear-Out

David Peery

ery Aircraft Structures

First Edition, page 296

Use forty degree angles to define the length of the shear area.

Equation for the Length of Shear-Out Area

$$x = e + R \left[\sqrt{\left(1 - \frac{r^2}{R^2} \sin^2 40^\circ \right)} - \frac{r}{R} \cos 40^\circ \right]$$

Example

R = 0.70 inch	r = 0.3125 inch	t = 0.5625 inch	e = 0.125 inch
P = 12,000 lb	Factor of Safety = 1.50	Fitting Factor = 1.20	d = 2 r
Design Load = 12,000) lb (1.50) 1.20 = 21,600 lb		h = 2 R

Length of Shear-Out Area

$$x = 0.125 + 0.70 \left[\sqrt{\left(1 - \frac{0.3125^2}{0.70^2} \sin^2 40^\circ \right)} - \frac{0.3125}{0.70} \cos 40^\circ \right] = 0.556 inch$$

Shear Stress

$$f_s = \frac{Design \ Load}{2 \ x \ t} = \frac{21,600 \ lb}{2 \ Shear \ Areas \ (0.556 \ inch \) \ 0.5625 \ inch} = 34.5 \ ksi$$

Tension at Net Section

$$f_t = \frac{Design \ Load}{(h-d) \ t} = \frac{21,600 \ lb}{(1.40 \ inch - 0.625 \ inch \ diameter) \ 0.5625 \ inch} = 49.5 \ ksi$$

Schrenk's Method of Spanwise Air-Load Distribution

David J. Peery Aircraft Structures First Edition, pages 228-232

NACA TN-948 A Simple Approximation Method for Obtaining the Spanwise Lift Distribution

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094469_1993094469.pdfO. Schrenk

Та	b	e	9.	1
		•	-	

Span y (in)	2 y / b	Chord c (in)	$\sqrt{1-\left(\frac{2y}{b}\right)^2}$	$\frac{4S}{xb} (Col 4)$	CCi	Ci
		400.0		404 7	101.05	0.000
0	0	102.0	1	101.7	101.85	0.999
10.00	0.042	100.0	0.999	101.6	100.81	1.008
23.04	0.096	98.3	0.995	101.2	99.77	1.015
46.08	0.192	94.7	0.981	99.8	97.25	1.027
69.12	0.288	91.0	0.958	97.4	94.20	1.035
92.16	0.384	87.4	0.923	93.9	90.65	1.037
114.12	0.476	83.8	0.880	89.5	86.63	1.034
136.08	0.567	80.3	0.824	83.8	82.04	1.022
158.04	0.659	76.8	0.753	76.5	76.67	0.998
180.00	0.750	73.3	0.661	67.3	70.28	0.959
195.00	0.813	69.2	0.583	59.3	64.24	0.928
210.00	0.875	63.0	0.484	49.2	56.12	0.891
215.00	0.896	60.0	0.444	45.2	52.60	0.877
220.00	0.917	55.8	0.400	40.6	48.22	0.864
225.00	0.938	49.5	0.348	35.4	42.45	0.857
240.00	1.000	0	0	0	0	0

Table 9.2

Span	Chord							
у	С	α_{aR}	α _{aR} C	α	C _{lb}	c c _{lb}	c c _{lb}	c _{lb} / c
	(in)	from ref. line		zero lift		(in)	faired	
0	102.0	6.80	693.7	3.71 °	0.185	18.90	18.90	0.185
23.04	98.3	6.80	668.5	3.71 °	0.185	18.21	18.21	0.185
46.08	94.7	6.80	644.1	3.71 °	0.185	17.55	17.49	0.185
69.12	91.0	6.80	618.9	3.71 °	0.185	16.86	11.85	0.130
92.16	87.4	6.80	594.4	3.71 °	0.185	16.19	1.29	0.015
92.16	87.4	0	0	-3.10 °	-0.155	-13.53	1.29	0.015
114.12	83.8	0	0	-3.10 °	-0.155	-12.97	-7.32	-0.087
136.08	80.3	0	0	-3.10 °	-0.155	-12.43	-11.08	-0.138
158.04	76.8	0	0	-3.10 °	-0.155	-11.89	-11.80	-0.154
180.00	73.3	0	0	-3.10 °	-0.155	-11.34	-11.34	-0.155
195.00	69.2	0	0	-3.10 °	-0.155	-10.71	-10.72	-0.155
210.00	63.0	0	0	-3.10 °	-0.155	-9.75	-9.65	-0.153
225.00	49.5	0	0	-3.10 °	-0.155	-7.66	-7.67	-0.155
240.00	0.0	0	0	-3.10 °	-0.155	0	0	0

Figure 9.16

 $C_{L} = 1.72$

Table 9.4

θ (deg.)	θ (radians)	2 y / b	m / m	C (in)	c _s / c	sin q	C _i	У
0.0 22.5 45.0 67.5 90.0	0.00 0.39 0.79 1.18 1.57	1.000 0.924 0.707 0.383 0	1 1 1 1	0 53.0 75.0 87.4 102.0	0 1.9245 1.3600 1.1670 1.0000	0 0.383 0.707 0.924 1.000	0 0.736 0.962 1.078 1.000	У4 У3 У2 У1 У0

Spanwise Distribution of Induced Drag

David J. Peery

Aircraft Structures

First Edition, pages 242-246

Geometry								
b / 2	240	in						
C ₁	102	in						
C ₁₂	<u>63.75</u>	in						
y ₁ - y ₄	23.040	in						
y ₅ - y ₈	21.960	in						
y ₉ - y ₁₂	15.000	in						
Taper	0.625	to 1						
S	38,340	in²						

INPUT

DATA	

Assume	Angle	e of	Attack

Aspect Ratio

α

1.00

radian

Slope of Section Lift Curves

ms	0.1000	per degree

			A ₁ / C _L	0.1740
С.	$= \frac{\pi c_s m_s b A_1}{\pi c_s m_s b A_1}$	4.404	A_2 / C_L	0.0071
\mathcal{O}_L	4 <i>S</i>	· · · · · · · · · · · · · · · · · · ·	A ₃ / C _L	0.0042

Table 9.4

θ (deg.)	θ (radians)	2 y / b	m / m	C (in)	c _s / c	sin q	Ci	у
0.0 22.5 45.0 67.5 90.0	0.00 0.39 0.79 1.18 1.57	1.000 0.924 0.707 0.383 0	1 1 1 1	0 53.0 75.0 87.4 102.0	0 1.9245 1.3600 1.1670 1.0000	0 0.383 0.707 0.924 1.000	0 0.736 0.962 1.078 1.000	У4 У3 У2 У1 У0

Bruhn Errata

Table 9.5

	Table 9.5								
1	θ	90 °	72 °	54 °	36 °	18 °			
2	y = b / 2 cos θ	0	74.2	141.1	194.2	228.3			
3	sin θ	1	0.951	0.809	0.588	0.309			
4	sin 3 0	-1	-0.588	0.309	0.951	0.809			
5	sin 5 0	1	0	-1	0	1			
6	0.1740 sin θ	0.1740	0.1655	0.1408	0.1023	0.0538			
7	0.0071 sin 3θ	-0.0071	-0.0042	0.0022	0.0068	0.0058			
8	0.0042 sin 5θ	0.0042	0	-0.0042	0	0.0042			
9	Σ A _n sin nθ	0.1711	0.1613	0.1388	0.1090	0.0637			
10	c c _l	100.00	94.28	81.10	63.73	37.25			

Table 9.6

Table 9.6											
		0	10.4	00.0	100.1	400	405	010	045	000	005
1	У	0	46.1	92.2	136.1	180	195	210	215	220	225
2	cci	101.85	97.3	90.7	82.0	70.0	63.3	54.8	51.1	46.7	41.4
3	Chord Length, c	102	94.7	87.4	80.3	73.3	69.2	63.0	60.0	55.8	49.5
4	C _I	0.999	1.027	1.037	1.022	0.955	0.915	0.870	0.852	0.838	0.837
5	$\alpha_a = 1 / 4.41$	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.227
6	c _i / m _o = c _i / 5.73	0.174	0.179	0.181	0.178	0.167	0.160	0.152	0.149	0.146	0.146
7	$\alpha_a = \alpha_a - c_1 / m_o$	0.053	0.048	0.046	0.049	0.060	0.067	0.075	0.078	0.081	0.081
8	$\mathbf{c}_{di} = \mathbf{c}_{l} \boldsymbol{\alpha}_{i}$	0.053	0.049	0.048	0.050	0.058	0.062	0.065	0.067	0.068	0.068

Plot

У	1,000 c	с
0	52.7	0.053
46.08	49.1	0.049
92.16	47.7	0.048
136.08	49.8	0.050
180	57.7	0.058
195	61.6	0.062
200	62.9	0.063
210	65.4	0.065
215	66.8	0.067
220	67.7	0.068
225	67.8	0.068
230	67.2	0.067
235	64.5	0.064

Graph

External Loads

David J. Peery

First Edition, pages 264-270

External Loads

David J. Peery Aircraft Structures page 264-270

Aircraft Structures

© 2006 All Rights Reserved

Tables 10.1 and 10.2

Table	10	.1
-------	----	----

α	C∟	C _D	C _M
26	2 132	0 324	0.0400
20	1.670	0.207	0.0350
15	1.285	0.131	0.0280
10	0.900	0.076	0.0185
5	0.515	0.040	0.0070
0	0.130	0.023	-0.0105
-5	-0.255	0.026	-0.0316
-10	-0.640	0.049	-0.0525
-15	-1.025	0.092	-0.0770
-17	-1.180	0.115	-0.0860

		-		
α	C _D sin θ Drag	$\mathbf{C}_{L} \cos \theta$	C _t Tail	C _{za} Airplane
26	0.1420	1.9162	0.0172	2.0755
20	0.0708	1.5693	0.0151	1.6551
15	0.0339	1.2412	0.0120	1.2872
10	0.0132	0.8863	0.0080	0.9075
5	0.0035	0.5130	0.0030	0.5195
0	0.0000	0.1300	-0.0045	0.1255
-5	-0.0023	-0.2540	-0.0136	-0.2699
-10	-0.0085	-0.6303	-0.0226	-0.6614
-15	-0.0238	-0.9901	-0.0331	-1.0470
-17	-0.0336	-1.1284	-0.0370	-1.1990

Table 10.2

Figure 10.9

Figure 10.9

Bruhn Errata

Table 10.3

Station	C _{di1}	$1.12 \ C_L^2 \ c_{di1}$	Cd	$c_d \sin \alpha$	C _{la1}	$c_{ }\cos \alpha$	c _n
	Fig 9.20		0.01 + (3)	(4) sin α	Fig 9.16	(6) cos α	(5) + (7)
220	0.068	0.345	0.355	0.156	0.880	1.687	1.843
200	0.063	0.320	0.330	0.145	0.924	1.771	1.916
180	0.058	0.294	0.304	0.133	0.964	1.847	1.981
160	0.053	0.271	0.281	0.123	0.996	1.909	2.032
140	0.050	0.252	0.262	0.115	1.019	1.952	2.067
120	0.047	0.240	0.250	0.110	1.032	1.978	2.088
100	0.046	0.235	0.245	0.107	1.038	1.988	2.096
80	0.046	0.235	0.245	0.107	1.037	1.987	2.094
60	0.047	0.241	0.251	0.110	1.032	1.977	2.087
40	0.049	0.251	0.261	0.114	1.024	1.962	2.077
20	0.052	0.264	0.274	0.120	1.013	1.942	2.062
0	0.055	0.279	0.289	0.127	0.998	1.913	2.040

Figure 9.16

Data

Table 10.4

					Shear Increment	Shear	Average Shear	Moment Increment	Bending Increment
Station (in)	c (in)	c _n	c c _n (in)	c c_n q/144 (lb / in)	ΔV (lb)	V (lb)	V _{avg} (Ib)	∆M /1000 (in-kip)	M/1000 (in-kip)
240	50.0	1 9 4 9	02.1	FFG	555.7	0	277.8	5.6	0
200	66.0	1.916	92.1 126.4	55.6 76.3	1,318.2	1,873.9	936.9	24.3	5.6 29.9
180	73.3	1.981	145.2	87.6	1,813.4	3,512.3	1,725.9	88.4	83.7
140	79.7	2.052	164.8	93.8 99.4	1,931.3 2 037 4	7,257.0	1,872.4 1 984 4	125.8 165.5	297.9
120 100	82.9 86.1	2.088	173.0 180.4	104.4 108.8	2,131.6	9,294.4 11,426.0	2,084.5	207.2	463.4 670.6
80	89.3	2.094	187.0	112.8	2,215.5 2 291 6	13,641.5	2,173.6 2 253 6	250.7 295 7	921.3
60 40	92.4 95.6	2.087 2.077	193.0 198.6	116.4 119.8	2,362.0	15,933.1 18 295 1	2,326.8	342.3	1,217.1 1,559.3
20	98.8	2.062	203.8	122.9	2,427.2 2 484 5	20,722.3	2,394.6 2 455 8	390.2 439.3	1,949.5
0	102.0	2.040	208.1	125.5	2,404.0	23,206.8	2,400.0	400.0	2,388.8

Station	c (in)	C n	c c _n (in)	c c_n q/144 (lb / in)	ΔV (lb)	V (lb)	V _{avg} (Ib)	∆M /1000 (in-kip)	M/1000 (in-kip)
240 220 200 180 160 140 120 100 80 60 40 20 0	50.00 66.00 73.31 76.50 79.69 82.88 86.07 89.26 92.45 95.64 98.83 102.02	1.843 1.916 1.981 2.032 2.067 2.088 2.096 2.094 2.087 2.077 2.062 2.040	92.1 126.4 145.2 155.4 164.8 173.0 180.4 187.0 193.0 198.6 203.8 208.1	55.57 76.26 87.58 93.76 99.37 104.37 108.79 112.76 116.40 119.80 122.92 125.53	556 1,318 1,638 1,813 1,931 2,037 2,132 2,216 2,292 2,362 2,427 2,485	0 556 1,874 3,512 5,326 7,257 9,294 11,426 13,642 15,933 18,295 20,722 23,207	0 937 1,478 1,726 1,872 1,984 2,084 2,174 2,254 2,327 2,395 2,456	5.6 24.3 53.9 88.4 125.8 165.5 207.2 250.7 295.7 342.3 390.2 439.3	0 6 30 84 172 298 463 671 921 1,217 1,559 1,950 2,389

V-n Diagram

Figure 10.10

Velocity, V (mph)

Shear and Bending Moment Diagrams

Chapter 5, pages 100-112

Beam Shear Stresses

Section 6.2, page 115 Example 1, page 117

Shear Flow in Thin Webs

Section 6.4, page 123 Example 1, page 126 Example 2, page 128 Example 3, page 129

Shear Flow Distribution in Box Beams

Section 6.7, page 133 Example 1, page 136

Tapered Beams

Section 6.8, page 141 Example 1, page 143

Beams With Variable Flange Areas

Section 6.9, page 147 Example 1, page 149

Beams With Unsymmetrical Cross Sections

Section 7.2, page 156 The "K" Method

Example 1 page 159, Example 2, page 161

Unsymmetrical Beams Supported Laterally

Section 7.3, page 162 Example 1, page 159 Example 2 page 161

Shear Flow in Unsymmetrical Beams

Section 7.5, page 169 Example, page 170

Bruhn Errata

Beams with Varying Cross Sections

Section 7.5, page 169 Example, page 170

Correction of Wing Bending Moments for Sweepback

Section 7.5, page 177 Example, page 178

Distribution of Concentrated Loads to Thin Webs

Section 8.1, page 181 Example 1, Figure 8.3, page 184

Loads on Fuselage Bulkheads

Section 8.2, page 186 Example 1, page 188

Analysis of Wing Ribs

Section 8.3, Example 1, page 191-193 Example 2, page 193-194

Shear Flow in Tapered Webs

Section 8.4, page 197-202

Differential Bending

Section 8.5, page 203

Cutouts in Semi-Monocoque Structures

Section 8.5, pages 202-210

Trusses with Single Redundancy

Section 17.2, page 455 Examples 1 and 2, pages 457-459

Trusses with Multiple Redundancy

Section 17.4, page 464 Example 1, page 466

Circular Fuselage Rings

Section 17.7, page 482

Irregular Fuselage Rings

Section 17.8, page 485

Torsion of Multi-Cell Box Beams

Section 17.10, page 491

Beam Shear in Multi-Cell Structures

Section 17.11, page 493 Example, page 494

Analysis of Practical Multi-Cell Structures

Section 17.12, page 497 Example, page 498

Shear Lag

- Section 17.13, page 502 Numerical Example, Section 17.15, page 506
- See also Section A19.18 beginning on page A19.24 ... Analysis and Design of Flight Vehicle Structures

Spanwise Variation of Warping Deformation

Section 17.14, page 503

Bruhn Errata

3.0 Charts and Graphs

Fastener Shear and Tension Interaction

MMPDS-01

General Case

$$R_t^2 + R_s^2 = 1$$

7075-T6 Lockbolts see MMPDS-01, page 8-110

$$R_t^{1} + R_s^{5} = 1$$

AN3 Series Bolts see MMPDS-01, page 8-125

$$R_t^2 + R_s^3 = 1$$

$$R_t^{1} + R_s^{10} = 1$$

Bruhn Errata

AN Steel Bolts

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures

Figure D1.4 and Figure D1.5, page D1.4

Figure D1.5

Figure D1.4

Figure D1.4 Shear and Tension on AN Steel Bolts

ANC-5 Strength of Metal Aircraft Elements

ANC-5 Strength of Metal Aircraft Elements Revised March 1955

Department of the Air Force Air Research and Development Command

Department of the Navy Bureau of Aeronautics

Department of Commerce Civil Aeronautics Administration

Section 1.535 Failure Under Combined Loadings, pages 11-13.

(For ANC-5, June 1951 see Section 1.535, pages 11-12)

Interaction Formula

Margin of Safety

 $MS = \frac{1}{R_{\perp} + R_{\perp}} - 1$ $R_1 + R_2 = 1.0$ $MS = \frac{2}{R_{\perp} + \sqrt{R_{\perp}^2 + 4 R_{2}^2}} - 1$ $R_1 + R_2^2 = 1.0$ $MS = \frac{2}{R_2 + \sqrt{R_2^2 + 4 R_1^2}} - 1$ $R_1^2 + R_2 = 1.0$ $R_1^2 + R_2^2 = 1.0$ $MS = \frac{1}{\sqrt{R_1^2 + R_2^2}} - 1$ $MS = \frac{1}{R_1 + R_2 + R_3} - 1$ $R_1 + R_2 + R_3 = 1.0$ $MS = \frac{2}{R_1 + R_2 + \sqrt{(R_1 + R_2)^2 + 4R_3^2}} - 1$ $R_1 + R_2 + R_3^2 = 1.0$ $MS = \frac{2}{R_1 + \sqrt{R_1^2 + 4(R_2^2 + R_3^2)}} - 1$ $R_1 + R_2^2 + R_3^2 = 1.0$ $R_1^2 + R_2^2 + R_3^2 = 1.0$ $MS = \frac{1}{\sqrt{R_1^2 + R_2^2 + R_3^2}} - 1$

Interaction Curves

ANC-5 Strength of Metal Aircraft Elements Revi

ents Revised March 1955

Figure 1.535 Typical Interaction Curves for Combined Loading Conditions, page 13.

(For ANC-5, June 1951 see Figure 1.535, page 12)

Interaction Surfaces

Interaction Formula

Margin of Safety

$$R_1 + R_2 + R_3 = 1$$
 $MS = \frac{1}{R_1 + R_2 + R_3}$ -

Interaction Curves, ANC-5 Strength of Metal Aircraft Elements

ANC-5 Strength of Metal Aircraft Elements March 1955 Revised

March 1955 Revised Edition Section 1.535, pages 11-13

1

Interaction Formula

Margin of Safety

$$R_1 + R_2 + R_3^2 = 1$$
 $MS = \frac{2}{R_1 + R_2 + \sqrt{(R_1 + R_2)^2 + 4R_3^2}} - 1$

Interaction Formula

Margin of Safety

$$R_1 + R_2^2 + R_3^2 = 1$$
 $MS = \frac{2}{R_1 + \sqrt{R_1^2 + 4(R_2^2 + R_3^2)}} - 1$

Interaction Formula

Margin of Safety

$$R_1^2 + R_2^2 + R_3^2 = 1$$
 $MS = \frac{1}{\sqrt{R_1^2 + R_2^2 + R_3^2}} - 1$

Lug Loads - Axial and Transverse Interaction

Lug Interaction Equation

$$R_{ax}^{1.6} + R_{tr}^{1.6} = 1$$

$$M.S. = \frac{1}{\left(R_{ax}^{1.6} + R_{tr}^{1.6}\right)^{0.625}} - 1$$
Bruhn page D1.8

Product Engineering

Analysis of Lugs and Shear Pins Made of Aluminum and Steel Alloys

F.P.Cozzone, M.A. Melcon and F.M.Hoblit

Product Engineering, Volume 21, Number 5, pages 113-117, May 1950

Developments in the Analysis of Lugs and Shear Pins, M.A. Melcon and F.M.Hoblit

Product Engineering, Volume 24, Number 6, pages 160-170, June 1953

Johnson-Euler Column Curves

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures, Figure C7.33, page C7.23

Aluminum Alloy

For E = 10.4 E6 psi

Figure C7.33 Johnson and Euler Column Curves

Cozzone-Melcon Non-Dimensional Column Buckling Curves

Cozzone & Melcon, Jr. Non-Dimensional Buckling Curves

Journal of the Aeronautical Sciences, October 1946

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures, Figure C2.17, page C2.7

Figure C2.17 Non-Dimensional Column Buckling Curves

Tangent Modulus from the Ramberg-Osgood Equation

Ramberg & Osgood NACA TN-902 Description of Stress-Strain Curves of Three Parameters, Figure 8

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures, Figure C2.16, page C2.6

Secant Modulus from the Ramberg-Osgood Equation

Ramberg & Osgood NACA TN-902 Description of Stress-Strain Curves of Three Parameters

Michael C. Y. Niu Airframe Structural Analysis, Figure 4.1.4, page 93

Ramberg-Osgood Stress-Strain Curve

Ramberg & OsgoodNACA TN-902 Description of Stress-Strain Curves of Three Parameters, Figure 6Elmer F. BruhnAnalysis and Design of Flight Vehicle StructuresFigure B1.14, page B1.9

$$\frac{E \varepsilon}{F_{0.7}} = \frac{f}{F_{0.7}} + \frac{3}{7} \left(\frac{f}{F_{0.7}}\right)^n$$

Figure B1.14 Stress-Strain in the Inelastic Range

Column Strength of Stiffener with Effective Sheet

Thesis by R.J.White *The Ultimate Compressive Strength of Thin Sheet Metal Panels* Appendix A, C.I.T. 1935

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure C7.36, page C7.26

- F_{ST} Stiffener Column Failing Stress
- A_o Area of Stiffener

- ρ_o Radius of Gyration Stiffener Alone
- S Distance from Sheet Centerline to Stiffener Neutral Axis

Figure C7.36 Curves for the Determination of $(\rho / \rho_0)^2 = F_c / F_{ST}$

Diagonal Tension Factor

NACA TN-2661	A Summary of Diagonal Tension. Part I: Methods of Analysis					
	Paul Kuhn , James P. Peterson , L. Ross Levin	Figure 13, page 108				
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C11.19, page C11.26				

Figure C11.19 Diagonal Tension Factor, k

Graph for Calculating Web Strain

NACA TN-2661	Summary of Diagonal Tension. Part I: Methods of Analysis					
	Paul Kuhn , James P. Peterson , L. Ross Levin	Figure 31, page 127				

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures

Figure C11.36, page C11.50

Figure C11.36 Web Strain
Allowable Shear Correction – Curved Webs

NACA TN-2661	A Summary of Diagonal Tension. Part I: Methods of Analysis		
	Paul Kuhn , James P. Peterson , L. Ross Levin	Figure 33, page 128	
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C11.40, page C11.52	

Stiffener Minimum Moment of Inertia

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure C10.9, page C10.8

Figure C10.9 Minimum Moment of Inertia

This curve may be used for flat or curved panels 1

2

- For elevated temperature designs multiply I_v / dt^3 by $E_{R.T.} / E_{temp}$ This curve applies only when the stiffeners are attached at each end to the sub-structure (flanges) 3
- 4 Do NOT include any effective skin in stiffener moment of inertia
- 5 This curve applicable only when buckling is elastic and d is less than h
- 6 The gage of the stiffener should NOT be less than that of the skin or web except as noted in the table below:

Weg Gage	0.025	0.032	0.040	0.051	0.064	0.074	0.081	0.091	0.102	0.125
Minimum Stiffener Gage	0.035	0.032	0.040	0.0	051	0.0	064	0.072	0.0)81

Buckling Coefficients

Shear Buckling Coefficients – Flat Plates

Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C5.11 page C5.7
----------------	--	------------------------

NACA TN-3781 Handbook of Structural Stability Part I - Buckling of Flat Plates

George Gerard and Herbert Becker Figure 22

Figure 22 Shear Buckling Coefficients

Bruhn Errata

Figure C9.1 Axial Compressive Buckling Coefficient for Long Curved Plates

NACA TN-1928	Critical Combinations of Shear and Direct Axial Stress for Curved Rectangular Panels		
	Murry Schildcrout and Manuel Stein	Figures 4 & 5, pages 22-23	
NACA TR-887	Critical Stress of Thin Walled Cylinders in Axial Compression		
	S. B. Batdorf, Murry Schildcrout, Manuel Stein	Figure 2	
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C9.1, page C9.2	

Compressive Buckling Coefficient - Long Curved Plates

Figure C9.2 Shear Buckling Coefficient for Long, Clamped, Curved Plates

NACA TN-1348	Critical Shear Stress of Curved Rectangular Panels	Figure 7
	S. B. Batdorf, Manuel Stein, Murry Schildcrout	
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C9.2, page C9.3

1000 a / b = 1.0 a / b = 1.5 a / b = 2.0 100 a / b = 3.0 Ř $a / b = \infty$ 10 1 -100 1 10 1000 Ζ

Shear Buckling Coefficient - Long, Curved Plates Clamped

Bruhn Errata

Figure C9.3 Shear Buckling Coefficient for Wide, Clamped, Curved Plates

NACA TN-1348	Critical Shear Stress of Curved Rectangular Panels	Figure 6
	S. B. Batdorf, Manuel Stein, Murry Schildcrout	
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C9.3, page C9.4

Figure C9.4 Shear Buckling Coefficient for Long, Simply Supported, Curved Plates

NACA TN-1348	Critical Shear Stress of Curved Rectangular Panels	Figure 2
	S. B. Batdorf, Manuel Stein, Murry Schildcrout	
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C9.4, page C9.5

Shear Buckling Coefficient - Long, Curved Plates (SS)

Bruhn Errata

Figure C9.5 Shear Buckling Coefficient for Wide, Simply Supported, Curved Plates

NACA TN-1348	Critical Shear Stress of Curved Rectangular Panels	Figure 1
	S. B. Batdorf, Manuel Stein, Murry Schildcrout	
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C9.5, page C9.5

Flat Sheet Buckling Interaction Curves

Combined Bending and Longitudinal Compression

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure C5.15, page C5.8

Margin of Safety

$$M.S. = \frac{1}{R_b^{1.75} + R_s} - 1$$

Figure C5.15 Combined Bending and Compression

Combined Bending and Shear

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures

Figure C5.16, page C5.8

Margin of Safety

$$M.S. = \frac{1}{\sqrt{R_b^2 + R_s^2}} - 1$$

Figure C5.16 Combined Bending and Shear

Combined Shear and Longitudinal Stress

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures

Figure C5.17, page C5.9

Buckling Margin of Safety

$$M.S. = \frac{2}{R_L + \sqrt{R_L^2 + 4 R_s^2}} - 1$$

Figure C5.17 Combined Shear and Longitudinal Stress

Compression, Bending and Shear $\rm R_s\,<\,R_c$

Elmer F. BruhnAnalysis and Design of Flight Vehicle StructuresFigure C5.19, page C5.9For Shear Ratio less than the Compressive Ratio, $R_s < R_c$ Note: Curves are approximate.

Figure C5.19 Combined Compression, Bending and Shear

Compression, Bending and Shear, $\rm R_c\,<\,R_s$

Elmer F. BruhnAnalysis and Design of Flight Vehicle StructuresFigure C5.19, page C5.9For Compressive Ratio less than the Shear Ratio, $R_c < R_s$

The chart above was solved for the interaction equation below by setting MS = 0 and changing R $_{\rm b}$ with a VBA trial and error routine.

$$MS = \frac{1}{R_{s} \left(R_{c} / R_{s}\right) + \left(R_{b}^{2} + R_{s}^{2}\right)^{0.75}} - 1$$

Round Tubes – Interaction Curves

Compression, Bending, Shear and Torsion

Analysis and Design of Flight Vehicle Structures Figure C4.40, page C4.26 Elmer F. Bruhn

Compression, Bending, Shear and Torsion

Elmer F. BruhnAnalysis and Design of Flight Vehicle StructuresFigure C4.40, page C4.26 R_s is the stress ratio for flexural shear ... R_{st} for torsional shear ... R_b for bending ... R_c for compression.

Collapsing Shear Stress - Round Holes with Formed 45 Degree Flanges

NACA-WR-L-323 The Strength and Stiffness Of Shear Webs With Round Lightening Holes Having 45 Degree Flanges

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930093634_1993093634.pdf

..... Paul Kuhn

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure C10.20, page C10.17 NACA A.R.R. L-323 December 1942

Figure C10.20 Collapsing Shear Stress

Curved Beams

Fred B. Seely James O. Smith Advanced Mechanics of Materials page 161

Ratio from Bleich's Solution

b' = α b

- b' = reduced or effective projecting width of flange on each side
- b = projecting width of the actual flange on each side
- α = a ratio obtained from Bleich's solution
- $\sigma' = \beta \sigma_G$
 - σ' = maximum lateral bending stress in the flange
 - σ_{G} = circumferential bending stress t / 2 from the extreme fiber, using the Winkler-Bach equation
 - β = a ratio obtained from Bleich's solution

Lugs

Peaking Factor for Pin Bending

Analysis of Lugs and Shear Pins Made of Aluminum and Steel Alloys

F.P.Cozzone, M.A. Melcon and F.M.Hoblit Product Engineering, Volume 21, Number 5, pages 113-117, May 1950

Developments in the Analysis of Lugs and Shear Pins

M.A. Melcon and F.M.Hoblit Product Engineering, Volume 24, Number 6, pages 160-170, June 1953

NASA/TMX-73305 NASA Astronautics Structures Manual

Figure B2.1.0-6, page 13

Figure 4 Peaking Factor For Pin Bending

Dashed lines indicate region where these theoretical curves are not substantiated by test data.

Bolt Bending Strength

Elmer F. Bruhn *Analysis and Design of Flight Vehicle Structures* Figure D1.16, page D1.9

Developments in the Analysis of Lugs and Shear Pins

M.A. Melcon and F.M.Hoblit

Product Engineering, Volume 24, Number 6, Figure 5, page 162, June 1953

Figure 5 Method of Determining Moment Arm and Approximating Effective Lug

Tension Efficiency of Lugs

Developments in the Analysis of Lugs and Shear Pins, M.A. Melcon and F.M.Hoblit Product Engineering, Volume 24, Number 6, pages 160-170, June 1953

NASA/TMX-73305	NASA Astronautics Structures Manual	Figure B2.1.0-4, page 9
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure D1.12, page D1.7

Figure D1.12 Tension Efficiency Factor of Lugs

Shear-Bearing Efficiency Factor, Axially Loaded Lugs

Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure D1.13, page D1.7
NASA/TMX-73305	NASA Astronautics Structures Manual	Figure B2.1.0-3, page 7
AFFDL-TR-69-42	Stress Analysis Manual	Figure 9-3, page 9-5

Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base

3.39

Tension Efficiency Factors, Transverse Loads

Analysis of Lugs and Shear Pins Made of Aluminum and Steel Alloys F.P.Cozzone, M.A. Melcon and F.M.Hoblit Product Engineering, Volume 21, Number 5, Figure 4, page 115, May 1950

Developments in the Analysis of Lugs and Shear Pins M.A. Melcon and F.M.Hoblit Product Engineering, Volume 24, Number 6, Figure 18, page 169, June 1953

NASA/TMX-73305 NASA Astronautics Structures Manual Figure B2.2.0-4, page 20

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure D1.15, page D1.8

Fig. D1.15 Efficiency Factors for Transverse Loads

Crippling Reduction Factor – Joggles

William F. McCombs Engineering Column Analysis – The Analysis of Compression Members Figure C7.45, page 11.9

Figure C7.45 Crippling Stress Reduction Factor - Aluminum Flanges

Minimum Lip Dimensions

D. F. Windenberg	Proceedings. 5th International Congress for Applied	d Mechanics pages 54-61, 1939
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C7.11, page C7.6

Figure C7.11

Minimum Lip Dimensions Required for Flange to Buckle as a Simply Supported Plate

3.42

Minimum Bulb Diameter

D. F. Windenberg	Proceedings. 5th International Congress for Applied	Mechanics pages 54-61, 1939
Elmer F. Bruhn	Analysis and Design of Flight Vehicle Structures	Figure C7.12, page C7.6

Figure C7.12

Minimum Bulb Dimensions Required for Flange to Buckle as a Simply Supported Plate

Maximum Shear Stress in Tubing

Carry-Over Factor

Elmor E Bruhn	Analysis and Design of Elight Vehicle Structures	Eigure A11 /6 page A11 23
	Analysis and Design of Fight Vehicle Structures	Figure ATT.40 page ATT.25

NACA TN-534 Benjamin Wylie James Graph I, page 47

Principal Effects of Axial Load on Moment-Distribution Analysis of Rigid Structures

Figure A11.46 Carry-Over Factor

Stiffness Factor Coefficient

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure A11.47 page A11.23

NACA TN-534 Graph II, page 47

Figure A11.47 Stiffness Factor Coefficient

Fixed-End Moment Coefficient

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Fig

Figure A11.48 page A11.24

NACA TN-534 Graph III, page 48

Column Distribution Coefficient

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure A11.48 page A11.24

NACA TN-534 Graph XI, page 52

Х

Rectangular Plate

Stephen Timoshenko

Theory of Plates and Shells

Second Edition, pages 387-389

Simply

Supported

а

0

у

Nx

General Expression for the Deflection

$$w = \sum_{m=1,2,3...,n=1,2,3...}^{\infty} a_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}$$

Fourier series where m and n are integers.

Critical Value of the Compressive Force

$$\left(N_x \right)_{cr} = \frac{\pi^2 a^2 D}{m^2} \left(\frac{m^2}{a^2} + \frac{1}{b^2} \right)^2 = \frac{\pi^2 D}{b^2} \left(\frac{mb}{a} + \frac{a}{mb} \right)^2 \quad k = \left(\frac{mb}{a} + \frac{a}{mb} \right)^2$$
Flexural Rigidity $D = \frac{E t^3}{12 (1 - v^2)}$

Graph

Analysis and Design of Flight Vehicle Structures

See Figure 12, page A18.22

Section Shape Factor

Analysis and Design of Flight Vehicle Structures

Figure C3.8, page C3.3

Nomenclature - Strong Axis

t1 = Web Thickness

$$K = \frac{2 Q}{Z} = \frac{2 Q c}{I}$$

t2 = Flange Thickness

Nomenclature - Weak Axis

t1 = Flange Thickness

t2 = Web Thickness

$$K = \frac{2 Q}{Z} = \frac{2 Q c}{I}$$

Section Shape Factor I – Strong Axis

Analysis and Design of Flight Vehicle Structures

Figure C3.8, page C3.3 (Modified)

Section Shape Factor, K

Section Shape Factor II – Strong Axis

Analysis and Design of Flight Vehicle Structures

Figure C3.8, page C3.3 (Modified)

Section Shape Factor, K

Section Shape Factor III – Weak Axis

Analysis and Design of Flight Vehicle Structures

Figure C3.8, page C3.3 (Modified)

Section Shape Factor, K

Bruhn Errata

Effective Width

Ernest E. Sechler and Louis G. Dunn Airplane Structural Analysis and Design Figure 6-2, page 205

Equation 6-5

$$\frac{W_{e}}{b} = 0.25 \left(1 + \frac{\sigma_{cr}}{\sigma_{se}}\right) \left(\frac{\sigma_{cr}}{\sigma_{se}}\right)^{\eta} \qquad \eta = 0.37 \frac{\sigma_{se}}{\sigma_{yp}}$$

Figure 6-2 Curve for Determining the Effective Width
Marquerre and Kármán-Sechler

Marquerre

$$\frac{W_e}{b} = \frac{1}{2} \sqrt[3]{\frac{\sigma_{se}}{\sigma_{yp}}}$$

Kármán-Sechler

Figure 6-2 Curve for Determining the Effective Width

Flange Flexibility Factor

Ernest E. Sechler and Louis G. Dunn Airplane Structural Analysis and Design Figure 6-30, page 239

The family of curves shifts up with increasing values of the web buckling angle, α . It is interesting to see how cleverly the shift was accounted for in the days of static graphs. With a spreadsheet we can simply input a new value for α and the curves will shift as shown on the following three pages.

Equation 6-33, page 238

$$\omega d = 1.25 \ d \left[\frac{t}{(I_c + I_T) \ h} \right]^{0.25} \sin \alpha$$

Old School Nomograph

Web Buckling Angle, α = 40 degrees is plotted for the family of curves.

In this example, for α = 37.5 degrees ωd = 2.45

Web Buckling Angle, α = 35 degrees

Figure 6-30 Chart for Determining Flange Flexibility Factor ωd

Web Buckling Angle, α = 40 degrees

Figure 6-30 Chart for Determining Flange Flexibility Factor ωd

Web Buckling Angle, α = 45 degrees

Figure 6-30 Chart for Determining Flange Flexibility Factor ωd

Chart for Determining Correction Factor R

Ernest E. Sechler and Louis G. DunnAirplane Structural Analysis and DesignFigure 6-31, page 20Herbert WagnerNACA TM-606Flat Sheet Metal Girders With Very Thin Metal Web, Part IIIFrom Zeitschrift für Flugtechnik und Motorluftschiffahrt Volume 20, Nos. 11 and 12, June 14 & 28, 1929

Figure 6-31 Chart for Determining R and C

ωd radians

Forced Crippling Stress of Stiffeners

Michael Chun-Yung Niu Airframe Stress Analysis and Sizing Figure 12.4.9, page 492

Calculation of Fastened-Joint Spring Constants

William F. McCombs Engineering Column Analysis – The Analysis of Compression Members Appendix E, page E1

AFFDL-TR-67-184

http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=AD831711&Location=U2&doc=GetTRDoc.pdf

W. F. McCombs, J. C. McQueen, J. L. Perry

Fastened-Joint Spring Constants

Та	ble	E-2
	~	

	k _n x 10 ⁻⁶			
D	Alum	Steel	Other	
0.125	0.212	4.71	0.715	
0.156	0.264	5.88	0.892	
0.188	0.317	7.07	1.073	
0.250	0.423	9.43	1.431	
0.313	0.528	11.80	1.790	
0.375	0.633	14.20	2.154	
0.438	0.732	16.40	2.488	
0.540	0.845	18.90	2.867	
0.563	0.952	21.20	3.216	
0.625	1.060	23.50	3.565	

	5/32" Hi-Lok			
Sheets	Test Calc Ratio			
Qty 2 - 0.072 Qty 2 - 0.102 0.072 & 0.102 2 - 0.072 & 0.102	127,800 153,200 136,800 291,300	121,651 172,339 142,626 285,251	1.05 0.89 0.96 1.02	

	1/4" NAS 464 Bolts				
Sheets	Test Calc Ratio				
Qty 2 - 0.072	163,000	121,824	1.34		
Qty 2 - 0.102	200,000	172,584	1.16		
0.072 & 0.102	183,000	142,828	1.28		
2 - 0.072 & 0.102	318,000	285,656	1.11		

Ultimate Bending Strength

William F. McCombs

Engineering Column Analysis – The Analysis of Compression Members Appendix A, page A.1

Stress vs Strain (Ultimate)

No	Material	Sizo	Yi	eld	Ultir	nate
NU.	Wateria	Size	$f_m = F_{ty}$	f o	f _m = F _{tu}	f _o
1	2014-T6 Alum Die Forgings	t ≤4 in	52	18.8	62	57.5
2	6061-T6 Aluminum Sheet	t > 0.020 in	35	17.5	42	40.5
3	7075-T6 Alum Die Forgings	t ≤ 2 in	65	25.5	75	70
4	7075-T6 Alum Hand Forging (L)	t ≤ 6 in	62	33.5	71	67
5	AZ61A Magnesium Extr (L)	t ≤ 0.25 in	21	7.5	38	15.7
6	HK31A-O Magnesium Sheet	0.016-0.25	18	4	30	22.6
7	ZK60AMargnesium Forging		26	7.5	42	30.8
8	AISI Alloy Steel (Normalized)	> 0.188 in	70	43.2	90	83.1
9	AISI Alloy Steel (Normalized)	t ≤ 0.188 in	75	47.1	95	86
10	AISI Alloy Steel (Heat Treated)		103	51.6	125	116
11	AISI Alloy Steel (Heat Treated)		132	66	150	146
12	AISI Alloy Steel (Heat Treated)		163	53	180	172
13	AISI Alloy Steel (Heat Treated)		176	65	200	192
14	17-7 PH Stainless Steel		150	62	180	161
15	PH15-7 MO (RH950) Stainless		200	55	225	160
16	TI - 8MN Titanium Alloy		110	36	120	115

Yield Bending Strength

William F. McCombs

Engineering Column Analysis – The Analysis of Compression Members Appendix A, page A.1

No	Matorial	Sizo	Y I	ela	Uitii	nate
NO.	Waterial	Size	$f_m = F_{ty}$	f _o	f _m = F _{tu}	f _o
1	2014-T6 Alum Die Forgings	t ≤4 in	52	18.8	62	57.5
2	6061-T6 Aluminum Sheet	t > 0.020 in	35	17.5	42	40.5
3	7075-T6 Alum Die Forgings	t ≤ 2 in	65	25.5	75	70
4	7075-T6 Alum Hand Forging (L)	t ≤ 6 in	62	33.5	71	67
5	AZ61A Magnesium Extr (L)	t ≤ 0.25 in	21	7.5	38	15.7
6	HK31A-O Magnesium Sheet	0.016-0.25	18	4	30	22.6
7	ZK60AMargnesium Forging		26	7.5	42	30.8
8	AISI Alloy Steel (Normalized)	> 0.188 in	70	43.2	90	83.1
9	AISI Alloy Steel (Normalized)	t ≤ 0.188 in	75	47.1	95	86
10	AISI Alloy Steel (Heat Treated)		103	51.6	125	116
11	AISI Alloy Steel (Heat Treated)		132	66	150	146
12	AISI Alloy Steel (Heat Treated)		163	53	180	172
13	AISI Alloy Steel (Heat Treated)		176	65	200	192
14	17-7 PH Stainless Steel		150	62	180	161
15	PH15-7 MO (RH950) Stainless		200	55	225	160
16	TI - 8MN Titanium Alloy		110	36	120	115

Stress vs Strain (Yield)

Ratio of Maximum Stress to Average Stress in Stiffener

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure C11.21, page C11.27

NACA TN-2661 *A Summary of Diagonal Tension Part I - Methods of Analysis* Figure 15, page 111 <u>http://naca.central.cranfield.ac.uk/report.php?NID=5043</u>

Figure C11.21 Ratio of Maximum Stress to Average Stress in Stiffener

Bruhn Errata

4.0 References

MMPDS-01

Metallic Materials Properties Development and Standardization (MMPDS)

http://www2.tech.purdue.edu/at/courses/at308/Technical Links/MMPDS/OptionsMenu.pdf

Federal Aviation Regulation

FAR 25 Transport Category Aircraft

http://ecfr.gpoaccess.gov/cgi/t/text/textidx?c=ecfr&sid=cabbfadd8d880241e74484634ab4c7ce&tpl=/ecfrbrowse/Title14/14cfr25 main 02.tpl

Subpart C – STRUCTURE

http://ecfr.gpoaccess.gov/cgi/t/text/textidx?c=ecfr&sid=cabbfadd8d8880241e74484634ab4c7ce&rgn=div6&view=text&node=14:1.0.1.3.11.3&idno=14

Subpart D - DESIGN AND CONSTRUCTION

http://ecfr.gpoaccess.gov/cgi/t/text/textidx?c=ecfr&sid=3b841ddaed809f9f37b71d3acaa45c01&rgn=div6&view=text&node=14:1.0.1.3.11.4&idno=14

European Aviation Safety Agency

EASA CS-25 Certification Specifications for Large Aeroplanes

http://www.easa.eu.int/doc/Agency_Mesures/Certification_Spec/decision_ED_2003_02_RM.pdf

Subpart C – STRUCTURE

http://www.easa.eu.int/doc/Agency_Mesures/Certification_Spec/decision_ED_2003_02_RM.pdf

Subpart D - DESIGN AND CONSTRUCTION

http://www.easa.eu.int/doc/Agency_Mesures/Certification_Spec/decision_ED_2003_02_RM.pdf

Thanks to Jim Baldwin.

Journal of the Aeronautical Sciences

Analysis of Stiffened Curved Panels Under Shear and Compression

Journal of the Aeronautical Sciences, February 1953, pp. 111-126

American National Standards Institute - ANSI

ANSI B46.1 Surface Texture

American Society of Mechanical Engineers - ASME

ASME Y14.5M Dimensioning and Tolerancing 1994

NASA Technical Reports Server (NTRS)

http://naca.larc.nasa.gov/?method=about

About

The NTRS provides access to NASA's current and historical aerospace research and engineering results. NTRS integrates three separate information collections and enables search and retrieval of information through a common interface:

NACA Collection: Citations and reports from the NACA Technical Report Server (TRS), <u>http://naca.larc.nasa.gov</u>, are now in NTRS. The NACA TRS site is retired and no longer in service following the consolidation of citations and reports into NTRS. The NACA collection is historical information from the NACA period lasting from 1915 to 1958.

NASA Collection: Citations and documents created or sponsored by NASA. The NASA collection time period starts in 1958 and continues to the present.

NIX Collection: Citations and images, photos, movies and videos downloaded from the NASA Image eXchange and served out through NTRS. NIX is a separate system and users can go directly to the NIX to search imagery as well as through NTRS.

http://naca.larc.nasa.gov/?method=simple

Search

NASA Technical Reports Server (NTRS)

http://naca.larc.nasa.gov/search.jsp

Books

General

Analysis and Design of Flight Vehicle Structures	Elmer F. Bruhn
http://www.jacobspublishing.net/	
A Supplement to Analysis and Design of Flight Vehicle Structures	William F. McCombs
Engineering Column Analysis – The Analysis of Compression Members	William F. McCombs
Aircraft Structures, First Edition	David J. Peery
Stresses in Aircraft and Shell Structures	Paul Kuhn
Airplane Structures	A.S. Niles and J.S. Newell
Airplane Structural Analysis and Design	E.E. Sechler and L.G.Dunn
Fundamentals of Aircraft Design	. Leland M. Nicolai
Strength of Materials	Francis R. Shanley
Strength of Materials: Part I - Elementary Theory and Problems	Stephen P. Timoshenko
Strength of Materials, Part II: Advanced Theory and Problems	Stephen P. Timoshenko
History of Strength of Materials	Stephen P. Timoshenko
Mechanics of Flight	Warren F. Phillips
Mechanics of Materials	Gere and Timoshenko
Mechanics of Materials	Francis R. Shanley
Mechanics of Composite Materials, Second Edition	Robert M. Jones
Advanced Mechanics of Materials	Fred Seely and James Smith
Advanced Mechanics of Materials	Stephen P. Timoshenko
Advanced Mechanics of Materials	A.P. Boresi, R.J. Schmidt
Theory of Plates	Stephen P. Timoshenko
Theory of Plates and Shells	Stephen P. Timoshenko
Basic Structures	Francis R. Shanley
Weight-Strength Analysis of Aircraft Structures	Francis R. Shanley
Theory of Elasticity	Stephen P. Timoshenko
Theory of Elastic Stability	Stephen P. Timoshenko
Vibration Problems in Engineering	Stephen P. Timoshenko

Composite Airframe Structures	Michael C. Y. Niu
Stress Concentration Factors	Rudolf Earl Peterson
Peterson's Stress Concentration Factors	Walter D Pilkey
The Elements of Aerofoil and Airscrew Theory	Hermann Glauert
Theory and Analysis of Flight Structures	Robert M. Rivello
Aerodynamics for Naval Aviators	Hugh H. Hurt
Aerodynamics of the Helicopter	Alfred Gessow
More Helicopter Aerodynamics	Raymond W. Prouty
Helicopter Performance, Stability and Control	Raymond W. Prouty
Military Helicopter Design Technology	Raymond W. Prouty
Fluid-Dynamic Drag	Sighard F. Hoerner
Fluid-Dynamic Lift	Sighard F. Hoerner
Design of Light Aircraft	Richard D. Hiscocks
Introduction to Flight	John D. Anderson, Jr.
Fundamentals of Aerodynamics	John D. Anderson, Jr.
Inventing Flight: The Wright Brothers and their Predecessors	John D. Anderson, Jr.
The Airplane: A History of its Technology	John D. Anderson, Jr.
A History of Aerodynamics and its Impact on Flying Machines	John D. Anderson, Jr.
Aircraft Performance & Design	John D. Anderson, Jr.
Modern Compressible Flow: with Historical Perspective	John D. Anderson, Jr.
Computational Fluid Dynamics: An Introduction	John D. Anderson, Jr.
Computational Fluid Dynamics	John D. Anderson, Jr.
Hypersonic and High Temperature Gas Dynamics	John D. Anderson, Jr.
VBA Developer's Handbook, 2nd Edition	Ken Getz
Excel 2003 Power Programming with VBA	John Walkenbach
Excel 2003 Formulas	John Walkenbach
UNIX in a Nutshell	Arnold Robbins
MSC/NASTRAN Primer, Static and Normal Modes Analysis	H.G. Schaeffer
The VNR Concise Encyclopedia of Mathematics	Gellert/Kustner/Hellwich/Kastner

Piping Stress Analysis

Introduction to Pipe Stress Analysis	Sockalingam (Sam) Kannappan
Piping Stress Handbook	Victor Helguero
Piping and Pipe Support Systems	P.R. Smith and T.J. Van Laan
Design of Piping Systems	M. W. Kellogg Company
Practical Guide to ASME B31.3: Process Piping	Glynn Woods & Roy Baguley
Piping Design and Engineering Bluebook	Anvil International
formerly Piping Design and Engineering	Grinnell Inc.
Flow of Fluids Through Valves, Fittings and Pipe	Crane Technical Paper 410
http://www.tp410.com	

ASME Codes

http://www.asme.org/Codes

ASTM Standards

http://www.astm.org/cgi-bin/SoftCart.exe/index.shtml?E+mystore

ESDU

http://www.esdu.com

ESDU (originally an acronym of "Engineering Sciences Data Unit" but now used on its own account) is an engineering advisory organization based in the United Kingdom.

http://en.wikipedia.org/wiki/ESDU

NASA Astronautics Structures Manual

Volume I NASA/TMX-73305

- Section A: General Introduction of the Methods Used and Includes Sections on Load, Combined Stress, and Interaction Curves
- Section B: Methods of Strength Analysis (B1 B6)

http://trs.nis.nasa.gov/archive/00000254/

Volume II NASA/TMX-73306

Section B: Methods of Strength Analysis (B7 - B10)

Section C: Structural Stability

http://trs.nis.nasa.gov/archive/00000175/

Volume III NASA/TMX-73307

- Section D: Thermal Stresses
- Section E: Fatigue and Fracture Mechanics
- Section F: Composites
- Section G: Rotating Machinery
- Section H: Statistics

http://trs.nis.nasa.gov/archive/00000177/

Stress Analysis Manual AFFDL-TR-69-42

AFFDL-TR-69-42

Gene E. Maddux

Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base

Leon A Vorst, F. Joseph Giessler, Terence Moritz

Technology Incorporated, Dayton, OH

February, 1970

National Technical Information Service

http://www.ntis.gov/search/product.aspx?ABBR=AD759199

NACA Reports

http://naca.larc.nasa.gov/search.jsp

Beams

NACA Report 608

Stress Analysis of Beams with Shear Deformation of the Flanges

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091683_1993091683.pdf Paul Kuhn

NACA Report 636

Approx Stress Analysis of Multi-Stringer Beams with Shear Deformation of the Flanges

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091711_1993091711.pdf

..... Paul Kuhn

Shells

NACA TN-691 Some Elementary Principles of Shell Stress Analysis with Notes on ... Shear Center
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081541_1993081541_pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081541_1993081541_pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081541_pdf

Paul Kuhn

Shear Lag

NACA TN-704	Some Notes on the Numerical Solution of Shear-	Lag and Related Problems
http://naca.central	l.cranfield.ac.uk/report.php?NID=1558	Paul Kuhn
NACA TN-739	A Recurrence Formula for Shear-Lag Problems	
http://naca.central.c	ranfield.ac.uk/reports/1939/naca-tn-739.pdf	Paul Kuhn
Report No. 739	Shear Lag in Box Beams Methods of Analysis an	nd Experimental Investigations
http://ntrs.nasa.gov/	archive/nasa/casi.ntrs.nasa.gov/19930091818_199309	01818.pdf
Langley Research	n Center	Paul Kuhn and Patrick T. Chiarito
NACA TN-1728	Shear Lag in Axially Loaded Panels	
http://ntrs.nasa.gov/	archive/nasa/casi.ntrs.nasa.gov/19930082421 199308	32421.pdf

.....Paul Kuhn and James P. Peterson

Bruhn Errata

Webs – Diagonal Tension

NACA TN-469 A Summary Of Design Formulas For Beams Having Thin Webs In Diagonal Tension http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081248 1993081248.pdf

..... Paul Kuhn

NACA TN-1364 Strength Analysis of Stiffened Beam Webs

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081990_1993081990.pdf

NACA TN-1481 Diagonal Tension in Curved Webs

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930082135_1993082135.pdf

...... Paul Kuhn and George E. Griffith

NACA TN-2661 A Summary of Diagonal Tension Part I - Methods of Analysis

http://naca.central.cranfield.ac.uk/report.php?NID=5043

......Paul Kuhn, James P. Peterson, L. Ross Levin

NACA TN-2662 A Summary of Diagonal Tension Part II - Experimental Evidence

http://naca.central.cranfield.ac.uk/report.php?NID=5044

......Paul Kuhn, James P. Peterson, L. Ross Levin

Skin-Stringer Panels

NACA TN-684 Study of Deformation and Effective Width in Axially Loaded Sheet-Stringer Panels http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081483 1993081483.pdf

NACA TN-1176 Stresses Around Rectangular Cut-Outs with Reinforced Coaming Stringers

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081940_1993081940.pdf

......Paul Kuhn, Norman Rafel, George E. Griffith

NACA TN-1241 Experimental Investigation of the Stress Distribution Around Reinforced Circular Cut-Outs In Skin Stringer Panels Under Axial Loads

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081847_1993081847.pdf

..... Daniel Farb

Curved Panels

NACA TN-1345 Critical Shear Stress of Long Plates with Transverse Curvature

http://naca.central.cranfield.ac.uk/reports/1947/naca-tn-1346.pdf

...... S. B. Batdorf, Murry Schildcrout, Manuel Stein

NACA TN-1347 Shear And Longitudinal Direct Stress For Long Plates With Transverse Curvature http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081973 1993081973.pdf

NACA TN-1348 Critical Shear Stress of Curved Rectangular Panels

http://naca.central.cranfield.ac.uk/reports/1947/naca-tn-1348.pdf

NACA TN-1928 Critical Combinations of Shear and Direct Axial Stress... Curved Rectangular Panels http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930082606 1993082606.pdf

NACA WR-L-57 Effect of Normal Pressure ...Critical Compressive and Shear Stress of Curved Sheet http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930090918 1993090918.pdf

.....Norman Rafel and Charles W. Sandlin, Jr

Originally issued as NACA ARR-L5B10

ARR = Advanced Restricted Report

WR = Wartime Report

Analysis of Stiffened Curved Panels Under Shear and Compression Journal of the Aeronautical Sciences, February, 1953M. A. Melcon and A. F. Ensrud

Simplified Analysis of General Instability of Stiffened Shells in Pure Bending Journal of the Aeronautical Sciences, Volume 16, October, 1949......Francis R. Shanley

Plates

NACA ARR-L6A05

Charts for Critical Combinations of Longitudinal and Transverse Stress for Flat Rectangular Plates

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930093360 1993093360.pdf

NACA ARR-3K13

Critical Stress For An Infinitely Long Flat Plate With Elastically Restrained Edges Under Combined Shear and Direct Stress

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930092503 1993092503.pdf

...... Elbridge Z. Stowell and Edward B. Schwartz

NACA ARR-3K27

Tables Of Stiffness And Carry-Over Factor For Flat Rectangular Plates Under Compression

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930093351_1993093351.pdf

......Kroll, W D

NACA TN-1817 Plastic Buckling of Simply Supported Compressed Plates

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930082491 1993082491.pdf

...... Richard A. Pride and George J. Heimerl

ARR = Advanced Restricted Report

Shells

NACA TN-691

Some Elementary Principles of Shell Stress Analysis with Notes on the Use of the Shear Center

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081541_1993081541.pdf

..... Paul Kuhn

Cylinders

NACA TN-951 *Tests on Thin-Walled Celluloid Cylinders to Determine the Interaction Curves* http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930087870 1993087870.pdf

.....Elmer F. Bruhn

NACA TN-1219 Stress Analysis By Recurrence Formula... Circular Cylinders Under Lateral Loads http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930082107_1993082107.pdf

.....John E Duberg and Joseph Kempner

NACA TN-1343 Critical Stress Of Thin-Walled Cylinders In Axial Compression

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930082161_1993082161.pdf

...... S. B. Batdorf, Murry Shildcrout, Manuel Stein

NACA TN-4237 General Instability of Stiffened Cylinders

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930085193 1993085193.pdf

...... George Gerard and Herbert Becker

NACA TR-887 Critical Stress of Thin-Walled Cylinders in Axial Compression

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091956_1993091956.pdf

Spanwise Lift Distribution

NACA TN-948 A Simple Approximation Method for Obtaining the Spanwise Lift Distribution http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094469 1993094469.pdfO. Schrenk

Buckling

NACA TN-534 Principal Effects of Axial Load on Moment-Distribution Analysis of Rigid Structures http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081286 1993081286.pdf

......Benjamin Wylie James

NACA TN-733 Experimental Study of Torsional Column Failure

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081491_1993081491.pdf

......S. Niles

NACA TN-902 Description of Stress-Strain Curves of Three Parameters

http://www.apesolutions.com/spd/public/NACA-TN902.pdf

NACA TN-2994 Column Strength of H–Sections and Square Tubes in Postbuckling Range of Component Plates

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930083739_1993083739.pdf

......P.P. Bijlaard and G.P. Fisher

NACA TN-3781 Handbook of Structural Stability Part I - Buckling of Flat Plates

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084505_1993084505.pdf

...... George Gerard and Herbert Becker

NACA TN-3782 Handbook of Structural Stability Part II - Buckling of Composite Elements

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084506_1993084506.pdf

......Herbert Becker

NACA TN-3783 Handbook of Structural Stability Part III - Buckling of Curved Plates and Shells

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084510_1993084510.pdf

......George Gerard and Herbert Becker

NACA TN-3784 Handbook of Structural Stability Part IV - Failure Of Plates and Composite Elements

http://ntrs.nasa.gov/search.jsp?R=209695&id=8&qs=N%3D4294800010

......George Gerard

NACA TN-3786 Handbook of Structural Stability Part VI -Strength of Stiffened Curved Plates and Shells http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084534_1993084534.pdf

NASA SP-8007 Buckling of Thin-Walled Circular Cylinders http://trs.nis.nasa.gov/archive/00000006/ Seide, P & Weingarten, V I & Peterson, J P

NASA SP-8068 Buckling Strength of Structural Plates
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710023855 1971023855.pdf
diamathrafty.com Gallagher, R H

Non-Dimensional Buckling Curves
Journal of the Aeronautical Sciences, October 1946Cozzone & Melcon, Jr.

Box Beams

NACA TN-530 Bending Stresses Due to Torsion in Cantilever Box Beams

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081277_1993081277.pdf

..... Paul Kuhn

NACA TN-1066 Stresses Around Large Cut-Outs in Torsion Boxes

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081723_1993081723.pdf

.....Paul Kuhn, Edwin M. Moggio

NACA TN-1361 Deformation Analysis of Wing Structures

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081987_1993081987.pdf Paul Kuhn

Bruhn Errata

Doublers

Lightening Holes

NACA-WR-L-323 The Strength and Stiffness of Shear Webs With Round Lightening Holes Having 45 Degree Flanges

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930093634_1993093634.pdf

..... Paul Kuhn

NACA-WR-L-402 The Strength and Stiffness of Shear Webs With and Without Lightening Holes

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930093371_1993093371.pdf

..... Paul Kuhn

Technical Memorandums

NACA TM-490 Structures of Thin Sheet Metal, Their Design and Construction

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930090854_1993090854.pdf . Herbert Wagner

NACA TM-604 Flat Sheet Metal Girders With Very Thin Metal Web. Part I : General Theories and Assumptions

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094812_1993094812.pdf

..... Herbert Wagner

NACA TM-605 The Flat Sheet Metal Girders With Very Thin Metal Web. Part II : Sheet Metal Girders With Spars Resistant To Bending - Oblique Uprights - Stiffness

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094811_1993094811.pdf

..... Herbert Wagner

NACA TM-606 Flat Sheet Metal Girders With Very Thin Metal Web. Part III : Sheet Metal Girders With Spars Resistant To Bending - The Stress In Uprights - Diagonal Tension Fields

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094810_1993094810.pdf

...... Herbert Wagner

NACA TM-774 The Tension Fields In Originally Curved, Thin Sheets During Shearing Stresses http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094643 1993094643.pdfH. Wagner and W. Ballerstedt NACA TM-784 Torsion and Buckling of Open Sections http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094633 1993094633.pdfH. Wagner and W. Pretschner NACA TM-809 Tests for the Determination of the Stress Condition In Tension Fields http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094606 1993094606.pdfR. Lahde and H. Wagner NACA TM-838 The Strength of Shell Bodies – Theory and Practice http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094578 1993094578.pdfH. Ebner NACA TM-870 Behavior of a Plate Strip Under Shear and Compressive Stresses Beyond the Buckling Limit http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094546 1993094546.pdfA. Kromm and K. Marguerre NACA TM-965 Rectangular Shell Plating Under Uniformly Distributed Hydrostatic Pressure http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930094451 1993094451.pdf

Lug Analysis

Product Engineering

Analysis of Lugs and Shear Pins Made of Aluminum and Steel Alloys
F.P.Cozzone, M.A. Melcon and F.M.Hoblit
Product Engineering, Volume 21, Number 5, pages 113-117, May 1950
Developments in the Analysis of Lugs and Shear Pins
M.A. Melcon and F.M.Hoblit

Product Engineering, Volume 24, Number 6, pages 160-170, June 1953

Efficiency Factor, Shear-Bearing

Stress Analysis Manual AFFDL-TR-69-42 Air Force Flight Dynamics Laboratory Air Force Systems Command, Wright-Patterson Air Force Base Figure 9-3, page 9-5

Efficiency Factor, Tension

Product Engineering, Volume 21, May, 1950 Cozzone, Melcon and Hoblit Analysis of Lugs and Shear Pins Made of Aluminum and Steel Alloys Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures Figure D1.12, page D1.7

Efficiency Factor, Transverse Loads

Elmer F. Bruhn *Analysis and Design of Flight Vehicle Structures* Figure D1.15, page D1.8

Average Area

Figure 9-7. Schematic of Lugs Under Transverse Loads

$$A_{avg} = \frac{6}{\frac{3}{A_1} + \frac{1}{A_2} + \frac{1}{A_3} + \frac{1}{A_4}}$$

Stress Analysis Manual AFFDL-TR-69-42 Air Force Flight Dynamics Laboratory Air Force Systems Command, Wright-Patterson Air Force Base Figure 9-7, page 9-20 Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures

Sketch on Figure D1.15, page D1.8 and equation on page D1.11

Interaction of Axial and Transverse Load

Stress Analysis Manual AFFDL-TR-69-42 Air Force Flight Dynamics Laboratory Air Force Systems Command Wright-Patterson Air Force Base Figure 9-12, page 9-25

Military Handbooks

MIL-HDBK

MIL-HDBK-5J	Metallic Materials and Elements for Aerospace Vehicle Structures		
MIL-HDBK-17-1F	Composite Materials Handbook Volume 1. Polymer Matrix Composites Guidelines for Characterization		
MIL-HDBK-17-2E	Composite Materials Handbook, Volume 2. Polymer Matrix Composites Materials Properties		
MIL-HDBK-17-3F	Composite Materials Handbook Volume 3. Polymer Matrix Composites Materials Usage, Design and Analysis		
MIL-HDBK-17-4	Composite Materials Handbook Volume 4. Metal Matrix Composites		
MIL-HDBK-17-5	Composite Materials Handbook Volume 5. Ceramic Matrix Composites		
MIL-HDBK-23A	Structural Sandwich Composites		
MIL-HDBK-700A	Plastics		
MIL-HDBK-754	Plastic Matrix Composite with Continuous Fiber Reinforcement		

MIL-HDBK-17 Online

http://euler9.tripod.com/materials/mil17v1.html

MMPDS-04

Metallic Materials Properties Development and Standardization (MMPDS)

http://store.ihs.com/specsstore/controller;jsessionid=+ip-IzSUbqB8JBFbIKggg**.app2?event=DOCUMENT_DETAILS&docId=HLAAHCAAAAAAAAAA

Army-Navy-Civil Committee on Aircraft Requirements (ANC)

- ANC-5 Strength of Aircraft Elements
- ANC-18 Design of Wood Aircraft Structures
- ANC-19 Wood Aircraft Inspection and Fabrication

http://www.eflightmanuals.com/search/searchResults.asp

MMPDS and MIL-HDBK-5

Online Information Resource

http://www.hdbk-5.battelle.org/

Public Version

http://www.hdbk-5.battelle.org/Default2.htm

MMPDS

http://www.mmpds.org/

MIL-HDBK-5J

http://assist.daps.dla.mil/quicksearch/basic_profile.cfm?ident_number=53876

Background

MIL-HDBK-5 has been the primary source of statistically based, design allowables for metallic materials and fastened joints used in the design of aerospace vehicle structures in the United States for over 50 years. In 2001/2002, the US Air Force transitioned custodianship of the handbook to the FAA. The FAA, in conjunction with Battelle Memorial Labs and an Industrial Steering Group (ISG), established the Metallic Materials Properties Development and Standardization (MMPDS) handbook as the ultimate replacement for MIL-HDBK-5.

History

http://www.hdbk-5.battelle.org/history.pdf

NASGRO

Fracture Mechanics and Fatigue Crack Growth Analysis Software

http://www.nasgro.swri.org/

Southwest Research Institute[®] (SwRI[®])

http://www.swri.org/

Address

SwRI Main Office 6220 Culebra Road P.O. Drawer 28510 San Antonio, Texas 78228-0510

Fatigue Analysis

NAVWEPS 00-25-559	Tips on Fatigue	Clarence R. Smith
Department of the Navy	Prepared for the Bureau	ı of Naval Weapons

ASTM International – Special Technical Publications

- STP 9 References on Fatigue
- STP 91 Manual on Fatigue Testing
- STP 203 Fatigue on Aircraft Structures
- STP 237 Symposium on Basic Mechanism of Fatigue
- STP 274 Symposium on Fatigue of Aircraft Structures
- STP 284 Symposium on Acoustical Fatigue
- STP 338 Symposium on Fatigue Tests of Aircraft Structures: Low-cycle, Full-scale, and Helicopters

Note: ASTM International was originally called the American Society for Testing and Materials.

http://www.astm.org/COMMIT/filtrexx40.cgi?-P+COMMIT+E08+commitpubs_stp.frm

American Society of Mechanical Engineers – ASME

Conference (International) on Fatigue of Metals – Proceedings

ASM International (American Society for Metals)

Metals Handbook

Society for Experimental Mechanics – SEM

Handbook of Experimental Stress...... Edited by M. Hetenyi

Note: "The Society for Experimental Mechanics, originally called The Society for Experimental Stress Analysis, was founded in 1943 as a nonprofit scientific and educational organization" (Wikipedia)

Miscellaneous

Fatigue of Metals	.P.G. Forrest
Fatigue in Aircraft Structure	. A.M. Freudenthal
The Fatigue of Metals and Structures	. Gordon Grover & Jackson
Metallic Fatigue With Particular Reference to Significance of Certain	Standard Aircraft Fabrication and
Finishing Process	.W.J. Harris
Designing by Photoelasticity	.R.B. Heywood
Designing Against Fatigue of Metals	.R.B. Heywood
Stress Concentration Design Factors	.R.E. Peterson
Full-Scale Fatigue Testing of Aircraft Structures	.R.J. Plantema & Schijve (Editors)
Metal Fatigue	. George Sines and J.L. Waisman
Fatigue Testing and Analysis of Results	.W.Weibull

AFGRO

Crack Growth Life Prediction Program

http://afgrow.wpafb.af.mil/

AFGRO History

http://afgrow.wpafb.af.mil/about/history.php

Download

http://afgrow.wpafb.af.mil/downloads/afgrow/pdownload.php

CASI – Center for Aerospace Information

http://www.sti.nasa.gov/RECONselect.html

AIAA Publications and Papers

http://www.aiaa.org/content.cfm?pageid=2

Public Domain Aeronautical Software

http://www.pdas.com/index.htm

Properties Of The U.S. Standard Atmosphere

http://www.pdas.com/atmos.htm

Atmosphere Table – Sample

http://www.pdas.com/e2.htm

COSPAR International Reference Atmosphere

http://badc.nerc.ac.uk/data/cira/

Mathcad Files

http://www.mathcad.com/library/mathcad_files.asp

Bruhn Errata

MacNeal-Schwendler Documentation

http://www.mscsoftware.com/support/documentation/

Numerical Recipes

http://www.library.cornell.edu/nr/

MIT OpenCourseWare

http://ocw.mit.edu/index.html

Eng-Tips Forums

http://www.eng-tips.com/

Time

http://tycho.usno.navy.mil/cgi-bin/timer.pl

NASA Links

http://mscweb.gsfc.nasa.gov/543web/designref.html

Magazines

Aviation Week

http://www.aviationnow.com/avnow/

Scientific American

http://www.sciam.com/

NASA Tech Briefs

http://www.nasatech.com/

Internet

Elmer F. Bruhn

https://engineering.purdue.edu/AAE/History

http://aae.www.ecn.purdue.edu/AAE/History/HistPics/HistL.html

The Atanasoff-Berry Computer

The final product was the size of a desk, weighed 700 pounds, had over 300 vacuum tubes, and contained a mile of wire. It could calculate about one operation every 15 seconds...

http://inventors.about.com/library/weekly/aa050898.htm?once=true&

http://www.scl.ameslab.gov/ABC/Progress.html

John Vincent Atanasoff

(1903 - 1995)

The obsession of finding a solution to the computer problem had built to a frenzy in the winter months of 1937. One night, frustrated after many discouraging events, he got into his car and started driving without destination. Two hundred miles later, he pulled onto a roadhouse in the state of Illinois. Here, he had a drink of bourbon and continued thinking about the creation of the machine. No longer nervous and tense, he realized that this thoughts were coming together clearly. He began generating ideas on how to build this computer! After receiving a grant of \$650 from Iowa State College in March 1939, Atanasoff was ready to embark in this exciting adventure. To help him accomplish his goal, he hired a particularly bright electrical engineering student, Clifford E. Berry. From 1939 until 1941 they worked at developing and improving the ABC, Atanasoff-Berry Computer, as it was later named. When World War II started on 7 December 1941, the work on the computer came to a halt. Although Iowa State College had hired a Chicago patent lawyer, Richard R. Trexler, the patenting of the ABC was never completed.

http://www.scl.ameslab.gov/ABC/Biographies.html

The idea of building an electronic digital computer came to him while he was sitting in a tavern. Dr. Atanasoff came up with four principles for his electronic digital computer.

He would use electricity and electronics as the medium for the computer.

In spite of custom, he would use base-two numbers (the binary system) for his computer.

He would use condensers for memory and would use a regenerative or "jogging" process to avoid lapses that might be caused by leakage of power.

He would compute by direct logical action and not by enumeration as used in analog calculating devices.

http://ei.cs.vt.edu/~history/do Atanasoff.html

Clifford E. Berry

http://www.scl.ameslab.gov/ABC/Biographies.html

Bruhn Errata

Stephen Prokofyevich Timoshenko

http://en.wikipedia.org/wiki/Stephen Timoshenko

Hardy Cross

http://en.wikipedia.org/wiki/Hardy Cross

http://www.nexusjournal.com/Eaton.html#anchor316605

Francis R. Shanley

http://content.cdlib.org/xtf/view?docId=hb229003hz&doc.view=frames&chunk.id=div00008&toc.depth=1&toc.idd=

Joseph Raphson

http://numericalmethods.eng.usf.edu/anecdotes/raphson.html

Pafnuty Lvovich Chebyshev

http://www-history.mcs.st-andrews.ac.uk/Biographies/Chebyshev.html

http://www-history.mcs.st-and.ac.uk/Extras/Chebyshev_nets.html

http://en.wikipedia.org/wiki/Chebyshev

André-Louis Cholesky

http://en.wikipedia.org/wiki/Andr%C3%A9-Louis Cholesky

Jean Baptiste Joseph Fourier

http://en.wikipedia.org/wiki/Joseph Fourier

Richard von Mises

In aerodynamics, Richard von Mises made notable advances in boundary-layer-flow theory and airfoil design. He developed the distortion energy theory of stress, which is one of the most important concepts used by engineers in material strength calculations. On probability, he posed the well-known birthday problem.

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Mises.html

http://en.wikipedia.org/wiki/Richard_von_mises

Birthday Problem

http://en.wikipedia.org/wiki/Birthday_problem

http://www.damninteresting.com/?p=402
von Mises Yield Criterion

http://en.wikipedia.org/wiki/Von Mises stress

Ludwig von Mises

http://en.wikipedia.org/wiki/Ludwig_von_Mises

The Cathedral and the Bazaar

http://www.catb.org/~esr/writings/cathedral-bazaar/

Famous Curves Index

http://www-gap.dcs.st-and.ac.uk/~history/Curves/Curves.html

Chebyshev Linkage

The Chebyshev linkage is a mechanical linkage that converts rotational motion to approximate straightline motion.

http://en.wikipedia.org/wiki/Chebyshev linkage

Peaucellier-Lipkin Linkage

The Peaucellier-Lipkin linkage (or Peaucellier-Lipkin cell), invented in 1864, was the first linkage capable of transforming rotary motion into perfect straight-line motion, and vice versa.

http://en.wikipedia.org/wiki/Peaucellier-Lipkin_linkage

Regulations.gov

http://www.regulations.gov/

5.0 Symbols and Abbreviations

General

A	Area		
A _{ij}	Extensional Stiffness Matrix (Composites)		
[A]	Extensional Stiffness Matrix (Composites)		
а	Dimension		
α	Angle		
α	α = a ratio obtained from Bleich's solution (Curved Beams)		
B _{ij}	Coupling Stiffness Matrix (Composites)		
[B]	Coupling Stiffness Matrix (Composites)		
BL	Butt Line		
b	Dimension (e.g. width)		
β	Angle		
β	β = a ratio obtained from Bleich's solution (Curved Beams)		
C_{ij}	Constants for Stress-Strain Relationship (Composites) $\sigma_i = C_{ij} \epsilon_j$		
с	Fixity Coefficient for Effective Length (Buckling)		
с	Distance from Neutral Axis to Extreme Fiber		
D	Diameter		
D	Bending/Flexural Rigidity (Plates)		
D _{ij}	Bending Stiffness Matrix (Composites)		
[D]	Bending Stiffness Matrix (Composites)		
d	Dimension (e.g. depth)		
δ	Deflection		
∇^2	Differential Operator		
Δ	Allowable Shear Correction, Curved Webs		
Δ	Laplacian Differential Operator $\Delta = \nabla^2$		
$\Delta \Delta$	Biharmonic Differential Operator $\Delta \Delta = \nabla^2 \nabla^2 = \nabla^4$		
E	Modulus of Elasticity (Young's Modulus)		

- E_c Modulus of Elasticity, Compression
- E_L Modulus of Elasticity, Longitudinal (Composites)
- E_T Modulus of Elasticity, Transverse (Composites)
- e Dimension (e.g. Distance from center of hole to an edge as in e/D)
- ε Strain or Tensor Shear Strain $\gamma = \varepsilon_{xy} + \varepsilon_{yx} = 2 \varepsilon_{xy}$ (Half of the engineering shear strain, γ)
- F_{bru} Ultimate Bearing Allowable
- F_{bry} Yield Bearing Allowable
- F_{cc} Crippling Allowable
- F_{cv} Compressive Yield Strength
- Fir Inter-Rivet Buckling Stress
- F_{su} Ultimate Shear Allowable
- F_{tu} Ultimate Tensile Strength
- F_{ty} Tensile Yield Strength
- F_{s_cr} Critical Shear Buckling Stress
- F_{0.7} Secant Yield Stress (Intersection of 0.70 E)
- F_{0.85} Secant Yield Stress (Intersection of 0.85 E)
- f_b Bending Stress
- f_s Shear Stress
- G Shear Modulus
- G_s Secant Shear Modulus
- γ Engineering Shear Strain $\gamma = \varepsilon_{xy} + \varepsilon_{yx} = 2 \varepsilon_{xy}$ (Twice the tensor shear strain, ε)
- h Dimension (e.g. height)
- I Moment of Inertia
- I_x Moment of Inertia about x-axis
- I_y Moment of Inertia about y-axis
- I_{xy} Product of Inertia
- K_t Tension Efficiency Factor of Lug
- k_s Shear Buckling Coefficient
- κ Curvature of a Two Dimensional Curve
- L Length

L	Longitudinal Grain Direction
LT	Long Transverse Grain Direction
Ľ'	Effective Length
λ	$\lambda = 1 - \nu^2$
М	Moment
M_{max}	Maximum Bending Moment
m	Slope
μ	Poisson's Ratio (υ is more common)
M.S.	Margin of Safety
Ν	Running Load (lb/in)
NACA	National Advisory Committee for Aeronautics
NASA	National Aeronautics and Space Administration
n	Ramberg-Osgood Shape Parameter
n _i	Initial Ramberg-Osgood Shape Factor
η	Inelastic Reduction Factor
Ρ	Load
Ps	Shear Load
Pt	Tensile Load
P _{allow}	Allowable Load
P _{ax}	Axial Load
P _{tr}	Transverse Load
pz	Pressure Loading
Q	First Area Moment
Q_{ij}	Reduced Stiffness Matrix for a Plane Stress State (Composites)
$\overline{\mathcal{Q}}_{ij}$	Transformed Reduced Stiffness Matrix for a Plane Stress State (Composites)
R	Reaction
R _{ax}	Axial Stress Ratio
R _{tr}	Transverse Stress Ratio

R_s Stress Ratio, Shear

R _t	Stress Ratio, Tension
ρ	Radius of Curvature
ρ	Radius of Gyration
S _{ij}	Constants for Strain-Stress Relationship (Composites) $\epsilon_i = S_{ij} \sigma_j$
ST	Short Transverse Grain Direction
STA	Fuselage Station
$\sigma_{\rm cr}$	Critical Stress
τ _{cr}	Critical Shear Stress
[T]	Transformation Matrix (Composites)
$[T]^{-1}$	Inverse of the Transformation Matrix (Composites)
t	Thickness
V	Shear
υ	Poisson's Ratio (sometimes μ is used)
WL	Water Line
w	Deflection of a Plate
w	Width
Z	Section Property for Curved Beams $Z = -1 + \frac{a}{A} \left[b \ln \left(\frac{a_o}{a_i} \right) - (b - t_w) \ln \left(\frac{a_o - t}{a_i + t} \right) \right]$

Composites

Extensional Stiffness Matrix

$$A_{ij} = \sum_{k=1}^{n} \left(\overline{Q}_{ij} \right)_{k} \left(h_{k} - h_{k-1} \right)$$

Coupling Stiffness Matrix

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} \left(\overline{Q}_{ij} \right)_{k} \left(h^{2}_{k} - h^{2}_{k-1} \right)$$

Bending Stiffness Matrix

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} \left(\overline{Q}_{ij} \right)_{k} \left(h^{3}_{k} - h^{3}_{k-1} \right)$$

Stiffness Matrix

C_{ij} Co

Constants for Stress-Strain Relationship $\sigma_i = C_{ij} \epsilon_j$

C_{ij} = C_{ji} 36 Independent Constants become 21 Independent Constants

Compliance Matrix

 S_{ij} Constants for Strain-Stress Relationship $\epsilon_i = C_{ij} \sigma_j$

S_{ij} = S_{ji} 36 Independent Constants become 21 Independent Constants

$$\left\{ \begin{array}{c} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{array} \right\} = \left[\begin{array}{c} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{12} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{13} & S_{23} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{14} & S_{24} & S_{34} & S_{44} & S_{45} & S_{46} \\ S_{15} & S_{25} & S_{35} & S_{45} & S_{55} & S_{56} \\ S_{16} & S_{26} & S_{36} & S_{46} & S_{56} & S_{66} \end{array} \right] \left\{ \begin{array}{c} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \tau_{23} \\ \tau_{31} \\ \tau_{12} \end{array} \right\}$$

Transformation Matrix

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\sin \theta \cos \theta \\ \sin^2 \theta & \cos^2 \theta & -2\sin \theta \cos \theta \\ -\sin \theta \cos \theta & \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix}$$

Inverse of the Transformation Matrix

$$\begin{bmatrix} T \end{bmatrix}^{-1} = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & -2\sin \theta \cos \theta \\ \sin^2 \theta & \cos^2 \theta & 2\sin \theta \cos \theta \\ \sin \theta \cos \theta & -\sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix}$$

Reduced Stiffness Matrix

 Q_{ij} Reduced Stiffness Matrix for a Plane Stress State

$$\begin{aligned} Q_{ij} &= C_{ij} - \frac{C_{i3} C_{j3}}{C_{33}} & \text{Where } \sigma_{3} = 0 & \tau_{23} = 0 & \tau_{31} = 0 \\ Q_{11} &= \frac{S_{22}}{S_{11} S_{22} - S_{12}^{2}} = \frac{E_{L}}{1 - \upsilon_{LT} \upsilon_{TL}} \\ Q_{22} &= \frac{S_{11}}{S_{11} S_{22} - S_{12}^{2}} = \frac{E_{T}}{1 - \upsilon_{LT} \upsilon_{TL}} \\ Q_{12} &= \frac{S_{12}}{S_{11} S_{22} - S_{12}^{2}} = \frac{\upsilon_{LT} E_{T}}{1 - \upsilon_{LT} \upsilon_{TL}} \\ Q_{66} &= \frac{1}{S_{66}} = \frac{E}{2(1 + \upsilon)} = G_{LT} \end{aligned}$$

Transformed Reduced Stiffness Matrix

\overline{Q}_{ij} Transformed Reduced Stiffness Matrix

$$\begin{aligned} \overline{Q}_{11} &= Q_{11} \cos^4 \theta + Q_{22} \sin^4 \theta + 2 \left(Q_{12} + 2 Q_{66} \right) \sin^2 \theta \cos^2 \theta \\ \overline{Q}_{22} &= Q_{11} \sin^4 \theta + Q_{22} \cos^4 \theta + 2 \left(Q_{12} + 2 Q_{66} \right) \sin^2 \theta \cos^2 \theta \\ \overline{Q}_{12} &= \left(Q_{11} + Q_{22} - 4 Q_{66} \right) \sin^2 \theta \cos^2 \theta + Q_{12} \left(\sin^4 \theta + \cos^4 \theta \right) \\ \overline{Q}_{66} &= \left(Q_{11} + Q_{22} - 2 Q_{12} - 2 Q_{66} \right) \sin^2 \theta \cos^2 \theta + Q_{66} \left(\sin^4 \theta + \cos^4 \theta \right) \\ \overline{Q}_{16} &= \left(Q_{11} - Q_{12} - 2 Q_{66} \right) \cos^3 \theta \sin \theta - \left(Q_{22} - Q_{12} - 2 Q_{66} \right) \cos \theta \sin^3 \theta \\ \overline{Q}_{26} &= \left(Q_{11} - Q_{12} - 2 Q_{66} \right) \cos \theta \sin^3 \theta - \left(Q_{22} - Q_{12} - 2 Q_{66} \right) \cos^3 \theta \sin \theta \end{aligned}$$

NACA Symbols – Diagonal Tension

- A Cross Sectional Area (square inches)
- E Young's Modulus (ksi)
- G Shear Modulus (ksi)
- G_e Effective Shear Modulus (ksi) Note: Includes effects of diagonal tension and plasticity.
- H Force in Flange Beam due to Horizontal Component of Diagonal Tension
- I Moment of Inertia (in^4)
- J Torsion Constant (in⁴)
- L Length of Beam (inches)
- L_e Effective Column Length of Upright (inches)
- P Force (kips)
- P_U Internal Force in Upright (kips)
- Q First Area Moment about Neutral Axis of Parts of Cross-Section as Specified by Subscripts (in³)
- R Total Shear Strength (kips in single shear) of all upright-to-web rivets in one upright
- R Coefficient of Edge Restraint
- S Transverse Shear Force (kips)
- T Torque (in-kips)
- d Spacing of Uprights (inches)
- e Distance From Median Plane of Web to Centroid of Single Upright (inches)
- f_n Normal Stress
- f_s Shear Stress
- h Depth of Beam (inches)
- k Diagonal Tension Factor
- q Shear Flow (kips per inch)
- t Thickness (inches) Note: Used without subscript signifies thickness of web.
- α Angle between Neutral Axis of Beam and Direction of Diagonal Tension (degrees)
- δ Deflection of Beam (inches)
- ε Normal Strain
- μ Poisson's Ratio

- ρ Centroidal Radius of Gyration of Cross-Section of Upright about Axis Parallel to Web (inches)
 (No sheet should be included.)
- σ Normal Stress (ksi)
- σ_o "Basic Allowable" Stress for Forced Crippling of Uprights (ksi) defined by Formula (37) of NACA TN-2661
- τ Shear Stress (ksi)
- τ^*_{all} "Basic Allowable" Value of Web Shear Stress (ksi) given by Figure (19) in NACA TN-2661
- ωd Flange Flexibility Factor defined by expression (19a) in NACA TN-2661

Subscripts

ПΤ	Diagonal	Tension
וט	Diagonal	Tension

- IDT Incomplete Diagonal Tension
- PDT Pure Diagonal Tension
- F Flange
- S Shear
- U Upright
- W Web
- all Allowable
- avg Average
- cr Critical
- cy Compressive Yield
- e Effective
- max Maximum
- ult Ultimate

Special Combinations

- P_u Internal Force in Upright (kips)
- R" Shear Force on Rivets per inch of run (kips per inch)
- R_R Value of R Required by Formula (40) in NACA TN-2661
- R_d Restraint Coefficients for Shear Buckling of Web Note: See Equation (32) of NACA TN-2661

- R_h Restraint Coefficients for Shear Buckling of Web Note: See Equation (32) of NACA TN-2661
- R_{tot} Total Shear Strength in Single Shear of All Rivets in One Upright (kips)
- d_c Clear Upright Spacing (inches) Note: Measured as shown in Figure 12(a) of NACA TN-2661.
- h_c Clear Depth of Web (inches) Note: Measured as shown in Figure 12(a) of NACA TN-2661.
- h_e Effective Depth of Beam Measured between Centroid of Flanges (inches)
- h_R Depth of Beam Measured between Centroids of Web-to-Flange Rivet Patterns (inches)
- h_U Length of Upright Measured between Centroids of Upright-to-Flange Rivet Patterns (inches)
- k_{ss} Theoretical Buckling Coefficient for Plates with Simply Supported Edges
- F_u "Basic" Allowable Stress for Forced Crippling of Uprights
- ωd Flange Flexibility Factor defined by expression (19a) in NACA TN-2661

Curved Web Systems Only

- R Radius of Curvature (inches)
- Z Curvature Parameter defined in NACA TN-2661, Figure 30
- d Spacing of Rings (inches)
- h Length of Arc between Stringers (inches)

Subscripts for Curved Web Systems

- RG Ring
- ST Stringer

References

Elmer F. Bruhn Analysis and Design of Flight Vehicle Structures, page C11.14 to C11.15

NACA TN-2661 A Summary of Diagonal Tension Part I - Methods of Analysis

http://naca.central.cranfield.ac.uk/report.php?NID=5043

...... Paul Kuhn, James P. Peterson, L. Ross Levin

NACA TN-2662 A Summary of Diagonal Tension Part II - Experimental Evidence

http://naca.central.cranfield.ac.uk/report.php?NID=5044

...... Paul Kuhn, James P. Peterson, L. Ross Levin

Aerodynamics

А	Wing Aspect Ratio = b^2 / S
α	Angle of Attack
$lpha_{aR}$	From Reference Line
α_{w0}	Reference Plane to Plane of Zero Lift
b	Wing Span (inches)
C_{D}	Wing Drag Coefficients
C_{L}	Wing Lift Coefficients
C_{M}	Wing Moment Coefficients
Ct	Dimensionless Tail Force Coefficients
C_{za}	Normal Force Coefficients for the Aircraft
с	Chord
Cd	Drag Coefficient
C _{di}	Section Induced Drag Coefficient
C _{di1}	Induced Drag Coefficient for $C_L = 1.0$
Cl	Section Lift Coefficient
C _{lb}	Basic Lift
C _{la1}	Additional Lift for $C_L = 1.0$
Cn	Normal Force Coefficients
К	Gust Effectiveness Factor
L _t	Distance from Aircraft Center of Gravity to Air Load on Tail
М	Wing Bending Moment
m_0	Slope of Section Lift Coefficients
n	Limit Maneuver Load Factor
q	Dynamic Pressure (lb / ft^2)
ρ	Mass Density of Air (slugs / ${\rm ft}^3$)
S	Wing Area (inch ²)
U	Gust Vertical Velocity
V	Velocity

- V Wing Shear
- W Gross Weight of Aircraft
- y Point Along Span

Index

Α

Abbreviations, 5.1 AFGRO, 4.20 AIAA Publications, 4.20 ANC-5, 3.4 André-Louis Cholesky, 4.23 Army-Navy-Civil Committee, 4.18 Asymmetrical Stringer Areas, 1.101 Atanasoff-Berry Computer, 4.22 Aviation Week, 4.21

В

Beam Bending, 1.74, 1.75 Bending Stiffness Matrix, 5.4 Bents, 1.133 Biplane, 1.4 Biplane Wing, 1.72 Box Beam, 1.54 Box Beams, 1.104, 2.20, 2.22, 4.7, 4.13 Buckling, 1.117, 1.118, 1.120, 1.126, 1.127, 1.131, 3.12, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 3.27, 3.29, 4.12, 4.13, 5.1, 5.2 Bulbs, 1.121, 1.123 Bulkheads, 2.21

С

Cantilever Wing, 1.119 Carry-Over Factor, 3.45 CASI, 4.20 Castigliano's Theorem, 1.10 Cathedral and the Bazaar, 4.24 Chebyshev Linkage, 4.24 Circular Cylinders, 1.126, 4.11, 4.13 Clifford E. Berry, 4.22 Column, 1.71, 1.113, 1.114, 1.115, 1.126, 3.11, 3.12, 3.16 Column Curves, 1.113, 3.11 Column Distribution Coefficient, 3.48 Column Distribution Factor, 1.71 Columns, 1.113, 1.114, 1.115 Compliance Matrix, 5.5 Composites, 5.4 Continuous Beam, 1.60, 1.71 Continuous Truss, 1.43 Correction Factor R, 3.60 COSPAR, 4.20 Coupling Stiffness Matrix, 5.1, 5.4 Cozzone-Melcon, 3.12 Crippling, 1.129, 5.2 Curved Beams, 3.35, 5.1, 5.4 Curved Panels, 4.9 Curved Webs, 3.19, 4.8, 5.1

Deflection Coefficients, 1.92 Delta P Method, 1.101, 1.103 Diagonal Tension, 1.129, 1.130, 3.17, 3.18, 3.19, 3.65, 4.8, 5.7, 5.9 Differential Bending, 2.21 Doublers, 1.133, 4.14 Doubly Redundant Truss, 1.40 Dummy Unit Load, 1.12 Dummy Unit Load Method, 1.36, 1.40 Dummy Unit Loads, 1.37, 1.40

Ε

Effective Cross Section, 1.96, 1.97 Effective Sheet, 1.125, 1.126, 3.16 Effective Width, 1.124, 3.54 Effective Widths, 1.124 Elmer F. Bruhn, 4.22 Eng-Tips Forums, 4.21 European Aviation Safety Agency, 4.1 Extensional Stiffness Matrix, 5.1, 5.4 External Loads, 2.15

F

Famous Curves, 4.24 Fastener, 3.1 Federal Aviation Regulation, 4.1 Five Cell Beam, 1.76 Fixed Beam with Variable Inertia, 1.62 Fixed-End Moment Coefficient, 3.47 Flange Flexibility Factor, 1.129, 3.56 Flanges, 1.130, 3.34, 4.7, 4.14 Flexibility Coefficients, 1.20, 1.21, 1.22, 1.42, 1.54 Framing Cutouts, 1.132, 1.133 Free Body Diagram, 1.13, 1.22 Fuselage, 1.48, 1.96, 1.97, 1.98, 1.130, 2.21, 2.22 Fuselage Rings, 2.22 Fuselage Side Truss, 1.60 Fuselage Truss, 1.48

G

Gaussian Elimination, 1.106

Η

Hardy Cross, 4.23 Hat-Section, 1.120 Hexagonal Cell Core, 1.131

I

Induced Drag, 2.12 Influence Coefficient Matrix, 1.33, 1.57 Influence Coefficients, 1.18, 1.21, 1.22, 1.33, 1.57 Inter-Rivet Buckling, 1.125 Inverse of the Transformation Matrix, 5.5

D

David J. Peery, 2.2, 2.9 Deflected Supports, 1.60

J

Jean Baptiste Joseph Fourier, 4.23 John Vincent Atanasoff, 4.22 Johnson-Euler, 3.11 Joseph Raphson, 4.23

L

Landing Gear, 1.21 Lips, 1.121, 1.123 Longeron, 1.130 Ludwig von Mises, 4.24 Lug Analysis, 4.16 Lugs, 3.10, 3.36, 3.37, 3.38, 3.39, 3.40, 4.16

Μ

MacNeal-Schwendler, 4.21 Mathcad. 4.20 Matrix Triple Product, 1.20, 1.21, 1.24, 1.34 Member Flexibility Coefficient, 1.43 Membrane Stress, 1.92 Method of Displacements, 1.106 Method of Dummy Unit Loads, 1.36 Method of Dummy-Unit Loads, 1.37 Method of Elastic Weights, 1.26 Method of Least Work, 1.35 MIL-HDBK-5, 4.19 Minimum Bulb, 3.43 Minimum Lip, 1.122, 3.42, 3.43 MMPDS-01, 4.1 Mohr's Circle, 1.111 Mohr's Method, 1.26, 1.27, 1.28 Moment Area Method, 1.29, 1.31 Moment Distribution Method, 1.59, 1.60, 1.61, 1.62, 1.65, 1.71 Monocoque Cylinders, 1.126 Multi-Cell Structures, 2.22 Multiple Redundancy, 2.22

Ν

NACA, 1.70, 1.71, 1.92, 1.117, 1.126, 1.129, 1.130 NACA Symbols, 5.7 NASA Astronautics Structures Manual, 4.6 NASA Links, 4.21 NASA Tech Briefs, 4.21 NASGRO, 4.19 Neutral Axis Method, 1.74, 1.75 Numerical Recipes, 4.21

0

Octahedral Shear Stress, 1.113

Ρ

Pafnuty Lvovich Chebyshev, 4.23

Peaucellier-Lipkin Linkage, 4.24 Peery, 2.1, 2.15, 2.16, 2.18 Plates, 1.93, 1.118, 1.126, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 4.12, 4.13, 5.1 Product Engineering, 4.16

R

Ramberg-Osgood, 1.110, 3.13, 3.14, 3.15 Real Loads, 1.15 Rectangular Plate, 3.49 Reduced Stiffness Matrix, 5.6 Redundant Forces, 1.58 Restraining Moment, 1.114, 1.115 Ribs, 2.1, 2.21 Richard von Mises, 4.23 Rigid Bodies, 1.2 Round Tubes, 3.32

S

Schrenk, 2.9, 4.11 Schrenk's Method, 2.9 Scientific American, 4.21 Secant Modulus, 3.14 Secondary Bending Moment, 1.130 Semi-Monocoque Structures, 2.21 Shear and Tension Interaction, 3.1 Shear Beam, 1.13, 1.22 Shear Flow, 1.14, 1.17, 1.75, 1.76, 1.82, 1.89, 2.20, 2.21 Shear Flow Analysis, 1.99 Shear Lag, 1.104, 2.22, 4.7 Shells, 4.7 Simplified Cladding Reduction Factors, 1.118 Single Redundancy, 2.21 Singly Redundant Truss, 1.37 Slope Deflection Method, 1.73 Southwest Research Institute, 4.19 Spanwise Air-Load Distribution, 2.9 Spanwise Lift Distribution, 4.11 Spar Caps, 1.16, 1.22 Spar Webs, 1.16, 1.22 Splice with Filler, 1.132 Stephen Prokofyevich Timoshenko, 4.23 Stepped Column, 1.114 Stiffener, 1.125, 1.126, 1.127, 3.16, 3.20 Stiffeners, 1.16, 1.22 Stiffness Factor Coefficient, 3.46 Stiffness Matrix, 5.5 Stiffness Method, 1.106 Stress Analysis Manual, 4.6 Stress-Strain Curve, 1.110, 3.15 Stringer, 1.74, 1.95, 1.98 Stringers, 1.87 Sweepback, 2.21 Symbols, 5.1

Т

Tapered Beams, 2.20

Tapered Circular Fuselage, 1.101 Tapered Fuselage, 1.99 Tapered Shear Beam, 1.13 Tapered Webs, 1.17, 2.21 Technical Memorandums, 4.14 Ten-Cell Beam, 1.82 Theorem of Least Work, 1.35 Thin Webs, 2.20, 2.21, 4.8 Three Dimensional Stresses, 1.112 Transformation Matrix, 5.5 Transformed Reduced Stiffness Matrix, 5.6 Truss, 1.11, 1.33, 1.37, 1.57, 1.60, 1.105, 1.109 Tubing, 3.44 Tubular Tail, 1.48

U

Ultimate Bending Strength, 1.98 Ultimate Strength, 1.115, 1.116 Unit Load Distribution, 1.19, 1.21, 1.23, 1.24, 1.33, 1.57 Unit Stress Distribution, 1.53

V

Variable Flange Areas, 2.20

Variable Inertia, 1.61, 1.62 Varying Cross Sections, 2.21 Virtual Loads, 1.15 Virtual Work, 1.12, 1.13 V-n Diagram, 2.19 von Mises Effective Stress, 1.113 von Mises Yield Criterion, 4.24

W

Wagner Beam, 1.128 Warping Deformation, 2.22 Web Design, 1.130 Web Stiffener, 1.129 Web Strain, 3.18 Wing, 1.1, 1.27, 1.28, 1.29, 1.72, 1.75, 1.87, 1.95, 2.1, 2.21, 4.13 Wing Beam, 1.1, 1.75, 1.87 Wing Spar, 1.4 Wrinkling, 1.131

Ζ

Zee Section, 1.75