Ellipse Perimeter

The Quest for a Simple, Exact Expression

brought to you by

The Midwest Norwegian-American Bachelor Farmer Preservation Guild

Ellipse Perimeter

The Quest for a Simple, Exact Expression

brought to you by

www.AircraftStressAnalysis.com

www.SuperDuperGenius.com

www.Super-Genius.com

www.Sexiest-Man-Alive.us

Mestrius Plutarchus (Plutarch)

"The mind is not a vessel to be filled but a fire to be kindled."

Albert Einstein

"Anyone who has never made a mistake has never tried anything new."

"Example isn't another way to teach, it is the only way to teach."

"It is a miracle that curiosity survives formal education."

References

Numericana

Gérard P. Michon, Ph.D.

http://www.numericana.com/answer/ellipse.htm#elliptic

Paul Bourke

University of Western Australia

http://www.paulbourke.net/geometry/ellipsecirc/

The Math Forum at Drexel

Ask Dr. Math

http://mathforum.org/dr.math/faq/formulas/faq.ellipse.circumference.html

Math is Fun

http://www.mathsisfun.com/geometry/ellipse-perimeter.html

Auxillary Circles Method

Pin and String Method

Trammel Method

Parallelogram Method

Ellipse in a Rectangle Method

Plane Cutting a Cone Method

Thanks to Anthony Rynne University of Limerick <u>http://www3.ul.ie/~rynnet/swconics/SE.htm</u>

Pin and String Method

Trammel Method

See also P. Grodzinski *Investigations on Shaft Fillets* 1941 Engineering (London), Volume 152, 1941, pp. 321-331 Streamlined Fillets by Grodzinski ... *Peterson's Stress Concentration Factors* by Walter D. Pilkey Figure 3.8, page 142

Ellipse in a Rectangle Method

Is this another name for the Parallelogram Method ?

Thanks to Anthony Rynne University of Limerick <u>http://www3.ul.ie/~rynnet/swconics/SE.htm</u>

Plane Cutting a Cone Method

Eccentricity

$$\varepsilon = \sqrt{1 - \left(\frac{b}{a}\right)^2}$$

Haley's Comet

a = 17.8 AU b = 4.8 AU

1 AU = 149,597,870,700 meters

Aspect Ratio, $b/a \approx 0.27$

Eccentricity \approx 0.963

Eccentricity

Colosseum

Approx 189 m x 156 m

Many believe the Colosseum is actually an ovoid.

Aspect Ratio, b / a = 0.825 Eccentricity ≈ 0.565

The Amphitheatre Construction Problem

http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/amphitheatre2.pdf

"... the parallels of an ellipse ... are actually eighth order polynomials containing 104 coefficients! "

Thanks to http://www.the-colosseum.net/architecture/ellipsis.htm

http://www.tribunesandtriumphs.org/colosseum/dimensions-of-the-colosseum.htm

Four – Centered Oval

The Amphitheatre Construction Problem

http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/amphitheatre2.pdf

Paul Rosin "... the parallels of an ellipse ... are actually eighth order polynomials containing 104 coefficients [13] ! "

[13] N.T. Gridgeman *Elliptic Parallels*, The Mathematics Teacher, 63:481-485, 1970.

Measured Data from the Colosseum

Four – Centered Oval

Thanks to http://www.the-colosseum.net/architecture/ellipsis.htm

http://www.tribunesandtriumphs.org/colosseum/dimensions-of-the-colosseum.htm

Applications

Elliptic Orbits with the Same Energy and Quantized Angular Momentum

Several enhancements to the Bohr model were proposed; most notably the Sommerfeld model or Bohr–Sommerfeld model, which suggested that electrons travel in elliptical orbits around a nucleus instead of the Bohr model's circular orbits.

http://en.wikipedia.org/wiki/Bohr_model

Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. The use of elliptic curves in cryptography was suggested independently by Neal Koblitz[1] and Victor S. Miller[2] in 1985.

Koblitz, N. (1987). "Elliptic curve cryptosystems". *Mathematics of Computation* 48 (177): 203–209. <u>JSTOR 2007884</u>.
 Miller, V. (1985). "Use of elliptic curves in cryptography". *CRYPTO* 85: 417–426. <u>doi:10.1007/3-540-39799-X_31</u>.

Thanks to http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

Applications

Ring Doublers

Paul Rosin "... the parallels of an ellipse ... are actually eighth order polynomials containing 104 coefficients !"

Computer Aided Design allows us to create parallel offsets using splines and calculates the equal spacing for the fasteners.

Rules of Thumb for Structural Design

M. L. Hand's Rule of Thumb

When designing doublers, (reinforcements around openings in a shell) an approximate sizing guide is to replace the removed material. In highly loaded structures or where fatigue is a concern, more reinforcement may be required. I've been told that **replacing three times the removed material is the norm for commercial aircraft**.

Ring Doubler with Equal Fastener Spacing

Circle

$$(x - a)^2 + (y - b)^2 = r^2$$

Area = π r²

Circumference = $2 \pi r$

Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Area = π a b Perimeter = ?

Ellipse Perimeter

Perimeter

$$P = 4 \ a \int_{0}^{\pi/2} \sqrt{1 - \left(\frac{a^2 - b^2}{a^2}\right) \sin^2 \theta} \ d\theta$$

or

$$P = 4 \ a \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^2 \sin^2 \theta} \ d\theta$$

Eccentricity

$$\varepsilon = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{1 - \left(\frac{b}{a}\right)^2}$$

Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$f = \sqrt{a^2 - b^2}$$

$$h = \frac{(a - b)^2}{(a + b)^2}$$

$$\varepsilon = \sqrt{1 - \left(\frac{b}{a}\right)^2} = \frac{f}{a}$$

Derivation of the Arc Length of an Ellipse

Eccentricity, &

$$\varepsilon = \sqrt{\frac{a^2 - b^2}{a}} = \sqrt{1 - \left(\frac{b}{a}\right)^2}$$

Equation of an Ellipse

Parametric Equations

 $x = a \sin \theta$ $y = b \cos \theta$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$\frac{dx}{d\theta} = a\cos\theta \qquad \frac{dy}{d\theta} = -b\sin\theta$$

Circumference

$$C = \int_{0}^{2\pi} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} d\theta$$

Symmetry

$$C = 4 \int_{0}^{\pi/2} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} d\theta$$

Substitution

$$\sin^2 \theta + \cos^2 \theta = 1$$
 Substitute $\cos^2 \theta = (1 - \sin^2 \theta)$ and eccentricity,

$$C = 4 a \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^2 \sin^2 \theta} d\theta = 4 a E(\pi/2, \varepsilon)$$

ε

Thanks to http://www.codeproject.com/Articles/566614/Elliptic-integrals

Solve for One Arc Length and Multiply by Four

Step 1 There are four arcs due to symmetry. Solve for one arc length.

Step 2 Calculate the Aspect Ratio, b / a

Step 3 Calculate the Eccentricity, $\varepsilon = \sqrt{1 - \left(\frac{b}{a}\right)^2}$

Step 4 Determine the Complete Elliptic Integral of the Second Kind for ε.

Step 5 Arc Length
$$Arc Length = a \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^{2} \sin^{2} \theta} d\theta$$

Step 6 Multiply by 4. $P = 4 a \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^{2} \sin^{2} \theta} d\theta$

Complete Elliptic Integral of the Second Kind

 $\frac{b}{a} = 0.50$ $\varepsilon = 0.8660254$ $E[\pi/2, \varepsilon] = 1.21105603$

Complete Elliptic Integrals

First Kind

$$K[\pi/2,k] = \int_{0}^{\pi/2} \frac{1}{\sqrt{1-k^{2}\sin^{2}\theta}} d\theta$$

Second Kind

$$E[\pi/2,\varepsilon] = \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^{2} \sin^{2} \theta} d\theta$$

Third Kind

$$\prod [n; \pi/2 | k] = \int_{0}^{\pi/2} \frac{1}{(1 - n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}} d\theta$$

Incomplete Elliptic Integrals of the First Kind

Incomplete Elliptic Integrals of the Second Kind

Quote

Bertrand Russell

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty – a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry."

Elliptic Integrals of the First & Second Kind

Fine Art

Incomplete Elliptic Integrals of the Third Kind

$$\prod [n; \pi/2 | k] = \int_{0}^{\pi/2} \frac{1}{(1 - n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}} d\theta$$

http://keisan.casio.com/exec/system/1244988714

Complete Elliptic Integral of the First Kind – Pendulum Period

Pendulum Period Error

θ	Τ/Το	Τ/Το
0	1	0%
5	1 00040	0.0400/
5	1.00046	0.040%
10	1.00191	0.191%
15	1.0043	0.430%
20	1.0077	0.767%
25	1.0120	1.203%
30	1.0174	1.741%
35	1.0238	2.383%
40	1.0313	3.134%
45	1.0400	3.997%
50	1.0498	4.978%
55	1.0608	6.083%
60	1.0732	7.318%
65	1.0869	8.692%
70	1.1021	10.214%
75	1.1190	11.896%
80	1.1375	13.749%
85	1.1579	15.789%
90	1.1803	18.034%

θ

Complete Elliptic Integrals

The value of the Complete Elliptic Integral of the First Kind at k = 0 is ... π / 2

The value of the **Complete Elliptic Integral of the Second Kind** at $\varepsilon = 0$ is ... $\pi / 2$

For Eccentricity, $\varepsilon = 0$, the Aspect Ratio, b/a = 1 and the Ellipse is a Circle with Circumference, $C = 2\pi r$ When a = b, the ratio b/a = 1 and the Complete Elliptic Integral of the Second Kind, $\mathbf{E}[\pi/2, 0] = \pi/2$

$$P = 4 \ a \ \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^2 \sin^2 \theta} \ d\theta = 4 \ a \ (\pi/2) = 2 \ \pi \ a$$

When b / a = 0, ϵ = 1 and the Complete Elliptic Integral of the Second Kind, **E** [π / 2, 1] = 1

$$P = 4 \ a \ \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^2 \sin^2 \theta} \ d\theta = 4 \ a \ (1) = 4 \ a$$

The value of the **Complete Elliptic Integral of the Third Kind** at the k = 0 is ... π / 2

Complete Elliptic Integral of the Second Kind

$$E\left[\pi/2,\varepsilon\right] = \int_{0}^{\pi/2} \sqrt{1 - \varepsilon^{2} \sin^{2} \theta} d\theta$$

Eccentricity, ɛ

Complete Elliptic Integral of the Second Kind

 $P = 4 \ a \ E [\pi/2, \varepsilon] = 4 \ (10.00 \ inch) \ 1.21105603 = 48.4422 \ inch$

Exact Expressions – Ellipse Perimeter

Colin Maclaurin 1742
$$P = 2 \pi a \sum_{n=0}^{\infty} \left\{ \left(\frac{-1}{2n-1} \right) \left[\frac{(2n)!}{(2^n n!)^2} \right]^2 e^{2n} \right\}$$

Leonhard Euler 1773
$$P = \pi \sqrt{2(a^2 + b^2)} \left\{ 1 - \sum_{n=1}^{\infty} \left[\left(\frac{\delta}{16} \right)^n (4n - 3)!! / (n!)^2 \right] \right\}$$

$$\delta = \left[\frac{(a^2 - b^2)}{(a^2 + b^2)} \right]^2$$

James Ivory 1796 $P = 4 \ a \ E \left[\frac{\pi}{2}, \varepsilon \right]$ $E = \frac{\pi}{2} \left\{ 1 - \sum_{n=1}^{\infty} \left[\frac{(2 \ n - 1)!!}{(2 \ n)!!} \right]^2 \frac{\varepsilon^{2n}}{2 \ n - 1} \right\}$

Arthur Cayley 1876 $Perimeter = 4 \ a \left\{ 1 + \left(\frac{x}{4}\right) \left[\ln \left(\frac{16}{x}\right) - 1 \right] + \left(\frac{3 \ x^2}{32}\right) \left[\ln \left(\frac{16}{x}\right) - \frac{13}{6} \right] + \left(\frac{15 \ x^3}{256}\right) \left[\ln \left(\frac{16}{x}\right) - \frac{12}{5} \right] + \left(\frac{175 \ x^4}{4,096}\right) \left[\ln \left(\frac{16}{x}\right) - \frac{1,051}{420} \right] + \dots \right\}$
Colin Maclaurin

Perimeter =
$$2 \pi a \sum_{n=0}^{\infty} \left\{ \left(\frac{-1}{2n-1} \right) \left[\frac{(2n)!}{(2^n n!)^2} \right]^2 e^{2n} \right\}$$

Example:

For a = 10 inch b = 5 inch b / a = 0.50 Eccentricity, e = 0.866

n	2n	2n - 1	-1/2n-1	$\left[\frac{(2n)!}{(2^n n!)^2}\right]^2$	$\frac{-1}{2n-1} \left[\frac{(2n)!}{(2^n n!)^2} \right]^2 e^{2n}$
0	0	-1	1	1	1
1	2	1	-1	0.25	-0.1875
2	4	3	-0.3333333333	0.140625	-0.026367188
3	6	5	-0.2	0.09765625	-0.008239746
4	8	7	-0.142857143	0.074768066	-0.003379583
5	10	9	-0.111111111	0.060562134	-0.001596853
6	12	11	-0.090909091	0.050889015	-0.000823377
7	14	13	-0.076923077	0.043878794	-0.000450547
8	16	15	-0.066666667	0.038565346	-0.000257393
9	18	17	-0.058823529	0.034399336	-0.000151933
10	20	19	-0.052631579	0.031045401	-9.20145E-05
75	150	149	-0.006711409	0.004230008	-1.2099E-14
76	152	151	-0.006622517	0.004174533	-8.83664E-15
77	154	153	-0.006535948	0.004120495	-6.45617E-15
78	156	155	-0.006451613	0.004067837	-4.71857E-15
79	158	157	-0.006369427	0.004016509	-3.44976E-15
80	160	159	-0.006289308	0.003966459	-2.52294E-15
81	162	161	-0.00621118	0.003917642	-1.8457E-15
82	164	163	-0.006134969	0.003870011	-1.35067E-15
83	166	165	-0.006060606	0.003823525	-9.88701E-16
84	168	167	-0.005988024	0.003778142	-7.23949E-16
85	170	169	-0.00591716	0.003733824	-5.30243E-16

Σ 0.7709822126

Perimeter = 2π (10 inch) = 2π (10 inch) 0.7709822126 = 48.4422 inch

Leonhard Euler

Perimeter =
$$\pi \sqrt{2(a^2 + b^2)} \left\{ 1 - \sum_{n=1}^{\infty} \left[\left(\frac{\delta}{16} \right)^n (4n - 3)!! / (n!)^2 \right] \right\}$$

where

$$\delta = \left[\frac{(a^2 - b^2)}{(a^2 + b^2)} \right]^2$$

Example: a = 10 inch b = 5 inch

n	(ð / 16) ⁿ	4 n - 3	(4 n - 3) ! !	n ! ²	$\sum_{n=1}^{\infty} \left[\left(\frac{\delta}{16} \right)^n (4n-3) !! / (n!)^2 \right]$
1	0.0225	1	1	1	0.0225
2	0.000506	5	15	4	0.001898438
3	1.14E-05	9	945	36	0.000299004
4	2.56E-07	13	135,135	576	6.01278E-05
5	5.77E-09	17	34,459,425	14,400	1.37993E-05
6	1.3E-10	21	13,749,310,575	518,400	3.44121E-06
7	2.92E-12	25	7,905,853,580,625	25,401,600	9.08584E-07
8	6.57E-14	29	6,190,283,353,629,370	1,625,702,400	2.50109E-07
9	1.48E-15	33	6.33265987076285E+18	131,681,894,400	7.10727E-08
10	3.33E-17	37	8.20079453263789E+21	13,168,189,440,00	0 2.07088E-08

Σ 0.02477606

Perimeter = $\pi \sqrt{2 \left[(10.00 \text{ inch})^2 + (5.00 \text{ inch})^2 \right]} (1 - 0.02477606) = 48.4422 \text{ inch}$

James Ivory

Gauss – Kummer Series

$$P = 4 \ a \ E \left[\pi / 2, \varepsilon \right]$$

$$E\left[\pi/2,\varepsilon\right] = \frac{\pi}{2} \left\{ 1 - \sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 \frac{\varepsilon^{2n}}{2n-1} \right\}$$

			· · · · · · · · · · · · · · · · · · ·
n	2n	2 n - 1	$\sum_{n=1}^{\infty} \left[\frac{(2 \ n - 1)!!}{(2 \ n)!!} \right]^2 \frac{\varepsilon^{2 \ n}}{2 \ n - 1}$
1	2	1	0.1875
2	4	3	0.026367
3	6	5	0.00824
4	8	7	0.00338
5	10	9	0.001597
6	12	11	0.000823
7	14	13	0.000451
8	16	15	0.000257
9	18	17	0.000152
10	20	19	9.2E-05
140	280	279	2.62E-23
141	282	281	1.94E-23
142	284	283	1.43E-23
143	286	285	1.06E-23
144	288	287	7.85E-24
145	290	289	5.8E-24
146	292	291	4.29E-24
147	294	293	3.18E-24
148	296	295	2.35E-24
149	298	297	1.74E-24
150	300	299	1.29E-24
			T 0 220040

Example: For a = 10 inch b = 5 inch b / a = 0.50 Eccentricity, ε = 0.866

Σ 0.229018

1 - Σ 0.770982

π/2(1-Σ) 1.211056

P = 4 (10.00 inch) 1.211056 = 48.4422 inch

Arthur Cayley

$$2E = 2 + \left[\ln\left(\frac{4}{b/a}\right) - \frac{1}{1\cdot 2}\right] \left(\frac{b}{a}\right)^2 + \left(\frac{1\cdot 3}{2\cdot 4}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{1}{3\cdot 4}\right] \left(\frac{b}{a}\right)^4 \\ + \left(\frac{1\cdot 3^2 \cdot 5}{2\cdot 4^2 \cdot 6}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{1}{5\cdot 6}\right] \left(\frac{b}{a}\right)^6 \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7}{2\cdot 4^2 \cdot 6^2 \cdot 8}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{1}{7\cdot 8}\right] \left(\frac{b}{a}\right)^8 \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9}{2\cdot 4^2 \cdot 6^2 \cdot 8^2 \cdot 10}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{1}{9\cdot 10}\right] \left(\frac{b}{a}\right)^{10} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9^2 \cdot 11}{2\cdot 4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2 \cdot 12}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{2}{9\cdot 10} - \frac{1}{11\cdot 12}\right] \left(\frac{b}{a}\right)^{12} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9^2 \cdot 11}{2\cdot 4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2 \cdot 12}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{2}{9\cdot 10} - \frac{1}{11\cdot 12}\right] \left(\frac{b}{a}\right)^{12} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9^2 \cdot 11^2 \cdot 13}{2\cdot 4^2 \cdot 6^2 \cdot 8^2 \cdot 10^2 \cdot 12}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{2}{9\cdot 10} - \frac{1}{11\cdot 12} - \frac{1}{13\cdot 14}\right] \left(\frac{b}{a}\right)^{14} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9^2 \cdot 11^2 \cdot 13}{2\cdot 4^2 \cdot 10^2 \cdot 12^2 \cdot 14^2 \cdot 16}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{2}{9\cdot 10} - \frac{2}{11\cdot 12} - \frac{1}{13\cdot 14}\right] \left(\frac{b}{a}\right)^{14} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9^2 \cdot 11^2 \cdot 13^2 \cdot 15}{2\cdot 10^2 \cdot 12^2 \cdot 14^2 \cdot 16}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{2}{9\cdot 10} - \frac{2}{11\cdot 12} - \frac{1}{13\cdot 14} - \frac{1}{15\cdot 16}\right] \left(\frac{b}{a}\right)^{16} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9^2 \cdot 11^2 \cdot 13^2 \cdot 15}{12^2 \cdot 14^2 \cdot 16^2 \cdot 16}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{2}{9\cdot 10} - \frac{2}{11\cdot 12} - \frac{2}{13\cdot 14} - \frac{1}{15\cdot 16}\right] \left(\frac{b}{a}\right)^{16} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 9^2 \cdot 11^2 \cdot 13^2 \cdot 15}{12^2 \cdot 14^2 \cdot 16^2 \cdot 16}\right) \left[\ln\left(\frac{4}{b/a}\right) - \frac{2}{1\cdot 2} - \frac{2}{3\cdot 4} - \frac{2}{5\cdot 6} - \frac{2}{7\cdot 8} - \frac{2}{9\cdot 10} - \frac{2}{11\cdot 12} - \frac{2}{13\cdot 14} - \frac{1}{15\cdot 16}\right] \left(\frac{b}{a}\right)^{16} \\ + \left(\frac{1\cdot 3^2 \cdot 5^2 \cdot$$

Example: For a = 10 inch b = 5 inch b / a = 0.50 2 E = 2.4221120

n Numerator Denominator Fraction Fractions - Right Side of Natural Logorithm 1 1 1 2 1 1 0.375 2 2 1 12 2 3 8 45 192 0.2343750 2 2 2 12 1 30 2 2 2 12 2 30 1 56 2 2 2 12 2 30 2 56 2 2 2 12 2 30 2 56 1 90 2 2 2 12 2 30 2 56 2 90 1 132 1,575 9,216 0.1708984 4 99.225 737,280 0.1345825 5 9,823,275 88,473,600 0.1110306 6

 2
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 2
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 1 1,404,728,325 14,863,564,800 0.0945082 273,922,023,375 3,329,438,515,200 0.0822727 8 0.0728457 69,850,115,960,625 958,878,292,377,600 9 22,561,587,455,281,900 345, 196, 185, 255, 936, 000 0.0653587 10 11 9,002,073,394,657,470,000 151,886.321,512,612,000,000 0.0592685 12 4,348,001,449,619,560,000,000 80, 195, 977, 758, 659, 100, 000, 000 0.0542172 2,500,100,833,531,250,000,000,000 50,042,290,121,403,200,000,000,000 0.0499598 13 14 1,687,568,062,633,590,000,000,000,000 36,430,787,208,381,600,000,000,000,000 0.0463226 15 1.321.365.793.042.100.000.000.000.000.000 30.601.861.255.040.500.000.000.000.000.000 0.0431793

 $P = 4 \ a \ E = 2 \ a \ (2 \ E) = 2 \ (10.00 \ inch \) 2.4221120 = 48.4422 \ inch$

Friedrich Bessel

$$P \approx \pi (a + b) \left\{ 1 + \left(\frac{1}{2}\right)^2 h + \sum_{n=2}^{\infty} \left[\frac{(2n-3)!!}{(2n)!!}\right]^2 h^n \right\}$$
$$h = \frac{(a - b)^2}{(a + b)^2}$$

		j		k		
n	2 n	2 n ! !	(2 n - 3)	(2 n - 3) ! !	(k / j) ²	(k / j) ² h ⁿ
2	4	8	1	1	0.015625	0.00019290123456790
3	6	48	3	3	0.0039063	0.00000535836762689
4	8	384	5	15	0.0015259	0.00000023256803936
5	10	3840	7	105	0.0007477	0.0000001266203770
6	12	46080	9	945	0.0004206	0.0000000079137736
7	14	645120	11	10395	0.0002596	0.0000000005428382
8	16	10321920	13	135135	0.0001714	0.0000000000398176
9	18	185794560	15	2027025	0.000119	0.0000000000030723
10	20	3.716E+09	17	34459425	8.6E-05	0.0000000000002466
11	22	8.175E+10	19	654729075	6.414E-05	0.00000000000000204
12	24	1.962E+12	21	1.3749E+10	4.911E-05	0.00000000000000017
13	26	5.101E+13	23	3.1623E+11	3.843E-05	0.000000000000000002
14	28	1.428E+15	25	7.9059E+12	3.064E-05	0.00000000000000000
15	30	4.285E+16	27	2.1346E+14	2.482E-05	0.000000000000000000
50	100	3.424E+79	97	2.7529E+76	6.463E-07	0.000000000000000000
51	102	3.493E+81	99	2.7254E+78	6.088E-07	0.000000000000000000
52	104	3.633E+83	101	2.7526E+80	5.742E-07	0.000000000000000000
53	106	3.85E+85	103	2.8352E+82	5.422E-07	0.000000000000000000
54	108	4.159E+87	105	2.977E+84	5.125E-07	0.000000000000000000
55	110	4.574E+89	107	3.1854E+86	4.849E-07	0.0000000000000000000000000000000000000
56	112	5.123E+91	109	3.4721E+88	4.593E-07	0.0000000000000000000000000000000000000
57	114	5.841E+93	111	3.854E+90	4.354E-07	0.0000000000000000000000000000000000000
58	116	6.775E+95	113	4.355E+92	4.132E-07	0.0000000000000000000000000000000000000
59	118	7.995E+97	115	5.0083E+94	3.925E-07	0.0000000000000000000000000000000000000
60	120	9.59E+99	117	5.8597E+96	3.731E-07	0.0000000000000000000000000000000000000

Σ 0.00019850568225

 $P \approx \pi (a + b) [1 + 0.25 (0.11111111) + (0.00019850568)] = 48.4422$

where

Srinivasa Ramanujan I

$$P \approx \pi \left[3 (a + b) - \sqrt{3 (a + b) (a + 3 b)} \right] = \pi (a + b) \left[3 - \sqrt{4 - h} \right]$$

$$h = \frac{(a - b)^2}{(a + b)^2}$$

Srinivasa Ramanujan II
$$P \approx \pi (a + b) \left[1 + \frac{3 h}{(10 + \sqrt{4 - 3 h})} \right]$$

David W. Cantrell
$$P \approx \pi (a + b) \left[1 + \frac{3 h}{(10 + \sqrt{4 - 3 h})} + 4 h^6 \left(\frac{1}{\pi} - \frac{7}{22} \right) h^6 \right]$$

Ramanujan Improvement

Lindner

$$P \approx \pi (a + b) \left(\frac{4}{\pi}\right)^{h}$$
$$P \approx 4 (a + b) \left(\frac{\pi}{4}\right)^{\left[(4ab)/(a+b)^{2}\right]}$$

Shahram Zafary
$$P \approx \pi (a + b) \left(\frac{4}{\pi}\right)^h \approx \pi (a + b) \left(\frac{4}{\pi}\right)^{\frac{(a-b)^2}{(a+b)^2}}$$

Shahram Zafary
$$P \approx 4 (a + b) \left(\frac{\pi}{4}\right)^{\left[(4 a b) / (a + b)^2\right]}$$

David F. Rivera
$$P \approx 4 \left[\frac{\pi \ a \ b + (a - b)^2}{a + b} \right] - \frac{89}{146} \left(\frac{a \ \sqrt{b} \ - \ b \ \sqrt{a}}{a + b} \right)^2$$

Padé Approximates

A Manual of Mathematics by Ralph G. Hudson and Joseph Lipka 1955

$$P \approx \pi (a + b) \frac{64 - 3h^2}{64 - 16h}$$

Truncation at order m = 3 of Padé Approximates

$$P \approx \pi (a + b) \frac{64 + 16h}{64 - h^2}$$

Jacobsen and Waadeland 1985

$$P \approx \pi (a + b) \frac{256 - 48h - 21h^2}{256 - 112h + 3h^2}$$

Next Level

$$P \approx \pi (a + b) \frac{3,072 - 1,280 h - 252 h^2 + 33 h^3}{3,072 - 2,048 h + 212 h^2}$$

Next Level

$$P \approx \pi (a + b) \frac{135,168 - 85,760 h - 5,568 h^2 + 3,867 h^3}{135,168 - 119,552 h + 22,208 h^2 - 345 h^3}$$

Giuseppe Peano
$$P \approx \pi \left[\frac{3(a+b)}{2} - \sqrt{ab} \right] = \pi (a+b) \frac{\left[3 - \sqrt{1-h}\right]}{2}$$

YNOT Formula by Roger Maertens $P \approx 4(a^y + b^y)^{1/y}$

$$y = \frac{\ln(2)}{\ln(\pi/2)}$$

where p = 3/2

$$\approx 2 \pi \left[\frac{(a^p + b^p)}{2} \right]$$

Circumference Formulas

$$P \approx \pi \sqrt{2 (a^2 + b^2) - \frac{(a - b)^2}{D}} = \pi (a + b) \sqrt{1 + h (1 - 1/D)}$$

Takakazu Seki

$$P \approx 2 \sqrt{\pi^2 a b + 4 (a - b)^2}$$

Standard Mathematical Tables and Formulae

Errata to the 30th Edition of the Standard Mathematical Tables and Formulae (CRC Press). Thanks to David F. Rivera and <u>www.numericana.com</u> <u>http://www.mathtable.com/errata/smtf30_errata_p2/index.html</u>

$$P \approx 2 a \left[2 + (\pi - 2) \left(\frac{b}{a} \right)^{1.456} \right]$$

Anonymous

$$P \approx \pi \sqrt{2 [(a^2 + b^2) - 0.50 (a - b)^2]}$$

Sipos

$$P \approx \pi (a + b) \frac{2}{1 + \mu^{2}}$$
where

$$\mu = \frac{(a - b)}{(a + b)}$$
Bronshtein

$$P \approx \pi (a + b) \frac{64 - 3 \mu^{4}}{64 - 16 \mu^{2}}$$
Ernst S. Selmer

$$P \approx \pi (a + b) \left[1 + \frac{\mu^{2}}{4} \left(\frac{16}{16 - \mu^{2}} \right) \right]$$
Ernst S. Selmer

$$P \approx \pi (a + b) \left[\frac{3}{2} + \frac{\mu^{2}}{8} - \frac{1}{2} \sqrt{\mu^{2}} \right]$$
Ernst S. Selmer

$$P \approx \pi (a + b) \left[\frac{4 (a - b)^{2}}{(5 a + 3 b) (3 a + 5 b)} \right] = \pi (a + b) \left[\frac{16 + 3h}{16 - h} \right]$$

where

$$h = \frac{(a-b)^2}{(a+b)^2}$$

Almkvist
$$P \approx 2 \pi (a + b) \left\{ \frac{2 (a + b)^2 - (\sqrt{a} - \sqrt{b})^4}{(a + b) \left[(\sqrt{a} - \sqrt{b})^2 + 2\sqrt{2} \sqrt{(a + b)} \sqrt[4]{ab} \right]} \right\}$$

Lu Chee Ket

$$P \approx \pi \sqrt{2 (a^2 + b^2)} \sum_{n=1}^{\infty} \left(\frac{\delta}{16}\right)^n \frac{(4 n - 3)!!}{(n!)^2}$$

$$\delta = \left[\frac{(a^2 - b^2)}{(a^2 + b^2)}\right]^2 = \frac{4 h}{(1 + h)^2}$$

Gauss – Kummer Series

See James Ivory

$$P = \pi (a + b) \sum_{n=0}^{\infty} {\binom{0.5}{n}}^2 h^n$$

$$P \approx \pi (a + b) \left[1 + \frac{h}{4} + \frac{h^2}{64} + \frac{h^3}{256} + \frac{25 h^4}{16,384} + \frac{49 h^5}{65,536} + \frac{441 h^6}{1,048,576} + \frac{1,089 h^7}{4,194,304} + \dots \right]$$

n		Num		Denom	$\sum_{n=0}^{\infty} \left({0.5 \atop n} \right)^2 h^n$
0			0	1	1
1	1	1	2	4	0.02777777777777778
2	1	1	6	64	0.0001929012345679
3	1	1	8	256	0.0000053583676269
4	5	25	14	16,384	0.0000002325680394
5	7	49	16	65,536	0.0000000126620377
6	21	441	20	1,048,576	0.000000007913774
7	33	1,089	22	4,194,304	0.000000000542838
8	429	184,041	30	1,073,741,824	0.00000000039818
				Σ	1.027976283460
				$\pi\left(a+b\right)$	47.1238898
				Perimeter	48.4422411

David W. Cantrell 2001
$$P \approx 4(a + b) - \frac{2(4 - \pi) a b}{H_p} = 4(a + b) - 2(4 - \pi) a b H_p$$

Holder Mean

$$H_{p} = \left[\frac{\left(a^{p} + b^{p}\right)}{2}\right]^{1/p}$$

$$p \quad 0.82990 \quad p = \frac{3\pi - 8}{8 - 2\pi}$$

$$p \quad 0.82506$$

$$p \quad 0.81949 \quad p = \frac{\ln(2)}{\ln\left[2/(4 - \pi)\right]}$$

David W. Cantrell 2004
$$P \approx 4 (a + b) - \frac{2 (4 - \pi) a b}{f}$$

where

$$f = p(a + b) [(1 - 2p)/(k + 1)] \sqrt{(a + kb) (ka + b)}$$

Hassan Abed

$$\lambda^{4} / (\sin \theta + \cos \theta)^{16} \text{ This is what i added to Ramanujan's formula, where } \lambda = \frac{1}{4} \left(\frac{A-B}{A+B}\right)^{2} \text{ Srinivasa Ramanujan}$$

$$P \approx \pi (a+b) \left[1 + \frac{3 \left(\frac{a-b}{a+b}\right)^{2} + \lambda^{4} / (\sin \theta + \cos \theta)^{16}}{10 + \sqrt{4-3} \left(\frac{a-b}{a+b}\right)^{2}} \right] \qquad P \approx \pi (a+b) \left[1 + \frac{3 \left(\frac{a-b}{a+b}\right)^{2}}{10 + \sqrt{4-3} \left(\frac{a-b}{a+b}\right)^{2}} \right]$$

http://www.paulbourke.net/geometry/ellipsecirc/

$$\sin\theta = \frac{\sqrt{A^2 - B^2}}{A} \quad , \quad \cos\theta = \frac{B}{A} \qquad \qquad \dot{\cdot} \ \left(\sin\theta + \cos\theta\right)^{16} = \left(\frac{B + \sqrt{A^2 - B^2}}{A}\right)^{16}$$

http://www.paulbourke.net/geometry/ellipsecirc/HassanAbed1.gif

Ellipse Perimeter

$$P_{ellipse} = \frac{A_{ellipse}}{\left(\frac{A_{ellipse}}{A_{circle}}\right) \left(\frac{A_{ellipse} / P_{ellipse}}{A_{circle} / C_{circle}}\right)} \approx \frac{A_{ellipse}}{\left(\frac{A_{ellipse}}{A_{circle}}\right) X_{factor}}$$

$$Y_{factor} = \frac{X_{factor}}{2 \pi}$$

Ratio	GRAN	GRAN	Ratio	GRAN	GRAN
b/a	X Factor	Y Factor	b/a	X Factor	Y Factor
0.05	0.0781083	0.0124313	0.55	0.6949549	0.1106055
0.10	0.1545889	0.0246036	0.60	0.7384163	0.1175226
0.15	0.2284164	0.0363536	0.65	0.7790898	0.1239960
0.20	0.2990564	0.0475963	0.70	0.8171553	0.1300543
0.25	0.3662205	0.0582858	0.75	0.8527866	0.1357252
0.30	0.4297755	0.0684009	0.80	0.8861516	0.1410354
0.35	0.4897002	0.0779382	0.85	0.9174104	0.1460104
0.40	0.5460528	0.0869070	0.90	0.9467127	0.1506740
0.45	0.5989453	0.0953251	0.95	0.9741991	0.1550486
0.50	0.6485234	0.1032157	1.00	1	0.1591549

GRAN X Factor and Y Factors vs Aspect Ratio, b / a

Ratio	GRAN		
b/a	Y Factor		
0.05	0.0124313		
0.10	0.0246036		
0.15	0.0363536		
0.20	0.0475963		
0.25	0.0582858		
0.30	0.0684009		
0.35	0.0779382		
0.40	0.0869070		
0.45	0.0953251		b
0.50	0.1032157	$P \approx$	~
0.55	0.1106055	1 -	Yfaatan
0.60	0.1175226		- jactor
0.65	0.1239960		
0.70	0.1300543		
0.75	0.1357252		
0.80	0.1410354		
0.85	0.1460104		
0.90	0.1506740		
0.95	0.1550486		
1.00	0.1591549		

Example a = 10 inch b = 5 inch

For b / a = 0.50 Y factor = 0.1032157

$$P \approx \frac{b}{Y_{factor}} \approx \frac{5 \text{ inch}}{0.1032157} \approx 48.4422 \text{ inch}$$

GRAN Functions – Ellipse Perimeter

Third Order Polynomial

$$\begin{split} Y_{factor} &\approx A \left(\frac{b}{a} \right)^3 + B \left(\frac{b}{a} \right)^2 + C \left(\frac{b}{a} \right) + D \\ \text{where} & \text{A} = 0.0241754181163 \quad \text{B} = -0.1318547008372 \quad \text{C} = 0.2671995647558 \quad \text{D} = -0.0005622344755} \\ & \text{R-squared} : 0.999988666288 & \text{R-squared} : adjusted : 0.999987944987 \end{split}$$

Sixth Order Polynomial

Yfactor	$\approx A\left(\frac{b}{a}\right)^{6} + B\left(\frac{b}{a}\right)^{5} + C\left(\frac{b}{a}\right)^{4} + C\left(\frac{b}{a}\right)^{6} + C\left(\frac{b}{a$	$D\left(\frac{b}{a}\right)^3 + E\left(\frac{b}{a}\right)^2 + F\left(\frac{b}{a}\right) + G$		
where	A = 0.055506415895 B = -0.218717429777 E = -0.029316702018 F = 0.251297160058	C = 0.346788209235 D = -0.246381274132 G = -0.000013699159		
	R-squared: 0.999999991 349	R-squared adjusted: 0.999999990169		

Legendre Polynomial – Tenth Degree

$$\begin{aligned} Y_{fector} &\approx 0.64237059137 - 1.49695312010 \left(\frac{b}{a}\right) \\ &+ 2.116143704 \left(\frac{1}{2} \left[3 \left(\frac{b}{a}\right)^2 - 1\right]\right) \\ &- 1.958802974 \left(\frac{1}{2} \left[5 \left(\frac{b}{a}\right)^3 - 3 \left(\frac{b}{a}\right)\right]\right) \\ &+ 1.377147227 \left[\frac{1}{8} \left[35 \left(\frac{b}{a}\right)^4 - 30 \left(\frac{b}{a}\right)^2 + 3\right]\right] \\ &- 0.774611287 \left[\frac{1}{8} \left[63 \left(\frac{b}{a}\right)^5 - 70 \left(\frac{b}{a}\right)^3 + 15 \left(\frac{b}{a}\right)\right]\right] \\ &+ 0.351812114 \left[\frac{1}{16} \left[231 \left(\frac{b}{a}\right)^5 - 315 \left(\frac{b}{a}\right)^4 + 105 \left(\frac{b}{a}\right)^2 - 5\right]\right] \\ &- 0.126498659 \left[\frac{1}{16} \left[429 \left(\frac{b}{a}\right)^7 - 693 \left(\frac{b}{a}\right)^5 + 315 \left(\frac{b}{a}\right)^3 - 35 \left(\frac{b}{a}\right)\right] \right] \\ &+ 0.034217125 \left[\frac{1}{128} \left[6.435 \left(\frac{b}{a}\right)^2 - 12.012 \left(\frac{b}{a}\right)^5 + 6.930 \left(\frac{b}{a}\right)^4 - 1.260 \left(\frac{b}{a}\right)^2 + 35\right] \right] \\ &- 0.006255655 \left[\frac{1}{128} \left[12155 \left(\frac{b}{a}\right)^9 - 25.740 \left(\frac{b}{a}\right)^7 + 18.018 \left(\frac{b}{a}\right)^5 - 4.620 \left(\frac{b}{a}\right)^4 + 3.465 \left(\frac{b}{a}\right)^2 - 63\right] \end{aligned}$$

R-squared: 0.999999999998 R-squared adjusted: 0.9999999999997

The Solution to Everything

$$P_{ellipse} = P_{ellipse}$$

Plot the Dow Jones or Standard and Poor's Index versus Phases of the Moon.

Phases of the Moon

Possible Weighting Factors

Eight Phases

Not "Extreme Perfect"

For a Circle

$$P \approx \frac{b}{Y_{factor}} \approx \frac{r}{1/2\pi} = 2\pi r$$

For small aspect ratios the perimeter approaches P = 4 a

But the Y factor goes to zero which means you are dividing by zero.

Plotting the Complete Elliptic Integral versus Aspect Ratio, (b / a) instead of Eccentricity, ϵ

Bleasdale – Nelder Power Curve

A = 0.518083

$$E \approx \left[A + B\left(\frac{b}{a}\right)^{C}\right]^{-1/D} + Offset \approx \left[A + B\left(\frac{b}{a}\right)^{C}\right]^{-1/D} + 1$$

where

B = 0.538323 C = -0.263801 D = 0.097480 Offset = 1.001249

 $P \approx 4 \ a \ E \approx 4 \ (10 \ inch) 1.2110639 \approx 48.4426 \ inch$

Simplified

The Complete Elliptic Integral of the Second Kind

$$E \approx \left[0.518 + 0.538 \left(\frac{b}{a} \right)^{-0.264} \right]^{-10.26} + 1$$

where A = 0.518 B = 0.538 C = -0.264 D = 0.09748 - 1 / D = -10.26 Offset = 1.00

Ellipse Perimeter

$$P \approx 4 \ a \left\{ \left[0.518 + 0.538 \left(\frac{b}{a} \right)^{-0.264} \right]^{-10.26} + 1 \right\}$$

Example a = 10 inch b = 5 inch

 $P \approx 4 \ a \ E \approx 4 \ (10 \ inch) \ 1.21106 \approx 48.4 \ inch$

Another Way – Ellipse Perimeter

Plotting the perimeter of an ellipse with a = 1 inch and b = 0 to 1 inch ...

Third Order Polynomial

$$P \approx a \left[-0.9812 \left(\frac{b}{a} \right)^3 + 2.6221 \left(\frac{b}{a} \right)^2 + 0.6511 \left(\frac{b}{a} \right) + 3.9808 \right]$$

a = 10 inch b = 5 inch Perimeter = 48.4 inch

Sixth Order Polynomial

$$P \approx a \left[1.561786 \left(\frac{b}{a}\right)^6 - 5.90478 \left(\frac{b}{a}\right)^5 + 9.355009 \left(\frac{b}{a}\right)^4 - 8.4884 \left(\frac{b}{a}\right)^3 + 5.596493 \left(\frac{b}{a}\right)^2 + 0.1634155 \left(\frac{b}{a}\right) + 3.999961 \right]$$

a = 10 inch b = 5 inch Perimeter = 48.44 inch

Simplest Exact Equation – Ellipse Perimeter

Plotting the Complete Elliptic Integral versus Aspect Ratio, (b / a) instead of Eccentricity, ϵ

Divide by four and we're back to where we started.

Plotting the data versus eccentricity instead of aspect ratio yields the Complete Elliptic Integral of the Second Kind.

Ellipse Perimeter

Back to where we started:

Exact – Not Simple

$$P = 4 \ a \ \int_{0}^{\pi/2} \sqrt{1 - \left(\frac{a^2 - b^2}{a^2}\right) \sin^2 \theta} \ d\theta$$

Simple – Not Exact

Ratio	GRAN	
b/a	Y Factor	
0 30	0.0684009	
0.35	0.0779382	
0.40	0.0869070	
0.45	0.0953251	
0.50	0.1032157	
0.55	0.1106055	
0.60	0.1175226	
0.65	0.1239960	
0.70	0.1300543	
0.75	0.1357252	
0.80	0.1410354	

 $P \approx \frac{b}{Y_{factor}}$

Even Wile E. Coyote, Super Genius ...

has things blow up in his face.

He never quits.

Wile E. Coyote, Super Genius ... I.Q. 207

Adventures of the Road-Runner (1962)

Ralph Phillips:

The thing I don't understand is why he wants the Road Runner in the first place.

Wile E. Coyote:

A legitimate question, young man, deserving a legitimate answer.

[he shows a picture of the Road Runner during this whole scene as he says:]

Now then, I can easily understand why it should puzzle you that a person of my intelligence, **I.Q. 207 Super Genius**, should devote his valuable time chasing this ridiculous road runner, this bird that appears to be so skinny, scrawny, stringy, unappetizing, anemic, ugly and misbegotten. Ah, but how little you know about road runners. Actually, the road runner is to the taste buds of a coyote, what caviar, champagne, filet mignon and chocolate fudge are to the taste buds of a man.

http://www.imdb.com/character/ch0029626/quotes

High IQ & Genius IQ

Genius or near-genius IQ is considered to start around 140 to 145. Less than 1/4 of 1 percent fall into this category.

Here are some common designations on the IQ scale:

115-124 - Above Average 125-134 – Gifted 135-144 - Very Gifted 145-164 – Genius 165-179 - High Genius 180-200 - Highest Genius

Unlock the Super Genius in YOU!

A Simple, Exact Solution Awaits
Martin Gran

Be honest, work hard ... love everyone.

Mange Takk

and

God Bless America!

Legal Department

While every effort has been made to assure that the information contained in this presentation is accurate and correct, it is only intended to provide general information for educational use. It is not intended to be a substitute for the reader's own research and judgment and the author assumes no liability for damages or losses caused by, directly or indirectly, the information contained within.

www.GranCorporation.com

Bill Gran

President, CEO & Super Genius

GRAN Corporation

Copyright © 2014 All Rights Reserved